論文の概要: A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer
using LSTM, BiLSTM, CNN, GRU, and GloVe
- arxiv url: http://arxiv.org/abs/2307.14361v1
- Date: Mon, 24 Jul 2023 21:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 19:12:01.209047
- Title: A Hybrid Machine Learning Model for Classifying Gene Mutations in Cancer
using LSTM, BiLSTM, CNN, GRU, and GloVe
- Title(参考訳): LSTM, BiLSTM, CNN, GRU, GloVeを用いた癌遺伝子変異分類のためのハイブリッド機械学習モデル
- Authors: Sanad Aburass, Osama Dorgham and Jamil Al Shaqsi
- Abstract要約: 本研究では、LSTM、BiLSTM、CNN、GRU、GloVeを組み合わせて遺伝子変異を分類するアンサンブルモデルを提案する。
その結果、BERT、Electra、Roberta、XLNet、Distilbert、LSTMアンサンブルといった有名なトランスフォーマーと比較された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents an ensemble model combining LSTM, BiLSTM, CNN, GRU, and
GloVe to classify gene mutations using Kaggle's Personalized Medicine:
Redefining Cancer Treatment dataset. The results were compared against
well-known transformers like as BERT, Electra, Roberta, XLNet, Distilbert, and
their LSTM ensembles. Our model outperformed all other models in terms of
accuracy, precision, recall, F1 score, and Mean Squared Error. Surprisingly, it
also needed less training time, resulting in a perfect combination of
performance and efficiency. This study demonstrates the utility of ensemble
models for difficult tasks such as gene mutation classification.
- Abstract(参考訳): 本研究では、LSTM、BiLSTM、CNN、GRU、GloVeを組み合わせたアンサンブルモデルを用いて、Kaggleのパーソナライズドメディカル:がん治療データセットを再定義する手法を提案する。
その結果,BERT,Electra,Roberta,XLNet,Distilbert,LSTMアンサンブルなどのよく知られたトランスフォーマーと比較した。
我々のモデルは、精度、精度、リコール、f1スコア、平均二乗誤差の点で他の全てのモデルよりも優れていた。
驚くべきことに、トレーニング時間も少なくなり、パフォーマンスと効率の完全な組み合わせになった。
本研究は,遺伝子変異分類などの難しい課題に対するアンサンブルモデルの有用性を示す。
関連論文リスト
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Unlocking the Power of Multi-institutional Data: Integrating and Harmonizing Genomic Data Across Institutions [3.5489676012585236]
共通遺伝子を超えて情報を保存するための統合的特徴を導出するためにブリッジモデルを導入する。
このモデルは、GenIE BPCデータにおいて、6種類のがん種にわたる患者の生存を予測するのに一貫して優れている。
論文 参考訳(メタデータ) (2024-01-30T23:25:05Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Fuzzy Gene Selection and Cancer Classification Based on Deep Learning
Model [1.3072222152900117]
我々は,癌分類を容易にする情報的遺伝子を同定するための新しいファジィ遺伝子選択法(FGS)を開発した。
FGS法で癌分類は96.5%,96.2%,96%,95.9%の精度,精度,リコール,f1スコアを得た。
得られた6つのデータセットを調べることで、提案モデルはがんを効果的に分類する能力を示す。
論文 参考訳(メタデータ) (2023-05-04T21:52:57Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
本稿では,特定の患者に限られた発作サンプルから迅速に適応できるパーソナライズされた発作検出・分類フレームワークを提案する。
トレーニング患者の集合からグローバルモデルを学ぶメタGNNベースの分類器を訓練する。
本手法は, 未確認患者20回に限って, 精度82.7%, F1スコア82.08%を達成し, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-11-01T14:12:58Z) - A robust and lightweight deep attention multiple instance learning
algorithm for predicting genetic alterations [4.674211520843232]
本稿では,遺伝子変異を予測するための新しいAttention-based Multiple Instance Mutation Learning (AMIML)モデルを提案する。
AMIMLは連続した1次元畳み込み層、デコーダ、および軽量アテンション機構のさらなる統合を容易にする余剰重量接続から構成されていた。
AMIMLは優れたロバスト性を示し、テスト対象遺伝子の大部分で5つのベースラインアルゴリズムをすべて上回るだけでなく、他の7遺伝子に対してほぼ最高の性能を示した。
論文 参考訳(メタデータ) (2022-05-31T15:45:29Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z) - Comparisons of Graph Neural Networks on Cancer Classification Leveraging
a Joint of Phenotypic and Genetic Features [7.381190270069632]
各種グラフニューラルネットワーク(GNNs)を癌型分類のための表現型と遺伝的特徴の関節を用いて評価した。
GNN、ChebNet、GraphSAGE、TAGCNは最高のパフォーマンスを示し、GATは最悪のパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-01-14T20:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。