論文の概要: HUGE: Huge Unsupervised Graph Embeddings with TPUs
- arxiv url: http://arxiv.org/abs/2307.14490v1
- Date: Wed, 26 Jul 2023 20:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 16:38:26.701142
- Title: HUGE: Huge Unsupervised Graph Embeddings with TPUs
- Title(参考訳): HUGE: TPUを使った巨大な教師なしグラフ埋め込み
- Authors: Brandon Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan
Halcrow, Bryan Perozzi
- Abstract要約: グラフ埋め込み(Graph Embedding)は、グラフ内のノードを連続的に表現するプロセスである。
高帯域幅メモリを利用した高性能グラフ埋め込みアーキテクチャを提案する。
実・合成大規模データセット上での埋め込み空間の品質を検証する。
- 参考スコア(独自算出の注目度): 6.108914274067702
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graphs are a representation of structured data that captures the
relationships between sets of objects. With the ubiquity of available network
data, there is increasing industrial and academic need to quickly analyze
graphs with billions of nodes and trillions of edges. A common first step for
network understanding is Graph Embedding, the process of creating a continuous
representation of nodes in a graph. A continuous representation is often more
amenable, especially at scale, for solving downstream machine learning tasks
such as classification, link prediction, and clustering. A high-performance
graph embedding architecture leveraging Tensor Processing Units (TPUs) with
configurable amounts of high-bandwidth memory is presented that simplifies the
graph embedding problem and can scale to graphs with billions of nodes and
trillions of edges. We verify the embedding space quality on real and synthetic
large-scale datasets.
- Abstract(参考訳): グラフは、オブジェクトの集合間の関係をキャプチャする構造化データの表現である。
利用可能なネットワークデータの普及に伴い、数十億のノードと数兆のエッジを持つグラフを素早く分析する産業や学術的なニーズが高まっている。
ネットワーク理解のための一般的な第一歩は、グラフ内のノードを連続的に表現するプロセスであるGraph Embeddingである。
連続表現は、特に大規模において、分類、リンク予測、クラスタリングといった下流の機械学習タスクを解決するために、しばしばより効果的である。
テンソル処理ユニット(TPU)と高帯域幅メモリを併用した高性能グラフ埋め込みアーキテクチャを提案し,グラフ埋め込み問題を単純化し,数十億のノードと数兆のエッジを持つグラフにスケール可能である。
本研究では,実および合成大規模データセットの組込み空間品質を検証する。
関連論文リスト
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - GLISP: A Scalable GNN Learning System by Exploiting Inherent Structural
Properties of Graphs [5.410321469222541]
産業規模グラフのためのサンプリングベースGNN学習システムであるGLISPを提案する。
GLISPは、グラフパーティショナ、グラフサンプリングサービス、グラフ推論エンジンの3つのコアコンポーネントで構成されている。
実験の結果、GLISPはトレーニングと推論タスクのために既存のGNNシステムよりも最大6.53タイム、70.77タイムのスピードアップを達成した。
論文 参考訳(メタデータ) (2024-01-06T02:59:24Z) - Graph Transformers for Large Graphs [57.19338459218758]
この研究は、モデルの特徴と重要な設計制約を識別することに焦点を当てた、単一の大規模グラフでの表現学習を前進させる。
この研究の重要な革新は、局所的な注意機構と組み合わされた高速な近傍サンプリング技術の作成である。
ogbn-products と snap-patents の3倍の高速化と16.8%の性能向上を報告し、ogbn-100M で LargeGT を5.9% の性能改善で拡張した。
論文 参考訳(メタデータ) (2023-12-18T11:19:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
大規模ネットワークデータセットの構造を視覚的に要約するSynGraphyについて述べる。
入力グラフに類似した構造特性を持つために生成されたより小さなグラフを描画する。
論文 参考訳(メタデータ) (2023-02-15T16:00:15Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
リレーショナルグラフ畳み込みネットワーク(R-GCN)のトレーニングは、グラフのサイズに合わない。
本研究では,グラフの要約手法を用いてグラフを圧縮する実験を行った。
AIFB, MUTAG, AMデータセットについて妥当な結果を得た。
論文 参考訳(メタデータ) (2022-03-05T00:28:43Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
本稿では,マルチレゾリューション・ハール型ウェーブレット(MathNet)を用いたグラフニューラルネットワークのためのフレームワークを提案する。
提案したMathNetは、特にデータセットにおいて、既存のGNNモデルよりも優れている。
論文 参考訳(メタデータ) (2020-07-22T05:00:59Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。