論文の概要: Beyond Message Passing: Neural Graph Pattern Machine
- arxiv url: http://arxiv.org/abs/2501.18739v2
- Date: Sun, 25 May 2025 14:54:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 19:27:26.618593
- Title: Beyond Message Passing: Neural Graph Pattern Machine
- Title(参考訳): メッセージパッシングを超えて:ニューラルグラフパターンマシン
- Authors: Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, Yanfang Ye,
- Abstract要約: 本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
- 参考スコア(独自算出の注目度): 50.78679002846741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph learning tasks often hinge on identifying key substructure patterns -- such as triadic closures in social networks or benzene rings in molecular graphs -- that underpin downstream performance. However, most existing graph neural networks (GNNs) rely on message passing, which aggregates local neighborhood information iteratively and struggles to explicitly capture such fundamental motifs, like triangles, k-cliques, and rings. This limitation hinders both expressiveness and long-range dependency modeling. In this paper, we introduce the Neural Graph Pattern Machine (GPM), a novel framework that bypasses message passing by learning directly from graph substructures. GPM efficiently extracts, encodes, and prioritizes task-relevant graph patterns, offering greater expressivity and improved ability to capture long-range dependencies. Empirical evaluations across four standard tasks -- node classification, link prediction, graph classification, and graph regression -- demonstrate that GPM outperforms state-of-the-art baselines. Further analysis reveals that GPM exhibits strong out-of-distribution generalization, desirable scalability, and enhanced interpretability. Code and datasets are available at: https://github.com/Zehong-Wang/GPM.
- Abstract(参考訳): グラフ学習のタスクは、ダウンストリームのパフォーマンスを支える重要なサブ構造パターン(例えば、ソーシャルネットワークの3進的クロージャや分子グラフのベンゼンリングなど)を特定することに集中することが多い。
しかし、既存のグラフニューラルネットワーク(GNN)のほとんどはメッセージパッシングに依存しており、これは局所的な近隣情報を反復的に集約し、三角形、k-斜め、リングのような基本的なモチーフを明示的に捉えるのに苦労している。
この制限は表現力と長距離依存性モデリングの両方を妨げる。
本稿では,グラフサブストラクチャから直接学習することでメッセージパッシングを回避できる新しいフレームワークであるNeural Graph Pattern Machine (GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
ノード分類、リンク予測、グラフ分類、グラフ回帰という4つの標準タスクにおける実証的な評価は、GPMが最先端のベースラインより優れていることを示している。
さらなる分析により、GPMは強力な分布外一般化、望ましいスケーラビリティ、拡張された解釈可能性を示すことが明らかとなった。
コードとデータセットは、https://github.com/Zehong-Wang/GPMで公開されている。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning [3.6881508872690825]
トポロジカルエッジ図(TED)と呼ばれる新しいエッジフィルタを用いた永続化図を導入する。
TEDは、ノードの埋め込み情報を保存し、追加の位相情報を含むことが数学的に証明されている。
本稿では,グラフを行グラフに変換することによってエッジ情報を抽出するLine Graph Vietoris-Rips (LGVR) Persistence Diagramを提案する。
論文 参考訳(メタデータ) (2024-12-23T10:46:44Z) - LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) は動的でテキスト対応のソーシャルグラフ生成のための新しいシミュレーションベースのフレームワークである。
GAGは、ゼロショットソーシャルグラフ生成のための時間ノードとエッジ生成プロセスをシミュレートする。
得られたグラフは7つの主要なマクロ的ネットワーク特性に付着し、微視的グラフ構造測定において11%の改善が達成される。
論文 参考訳(メタデータ) (2024-10-13T12:57:08Z) - Greener GRASS: Enhancing GNNs with Encoding, Rewiring, and Attention [12.409982249220812]
本稿では,新しいGNNアーキテクチャであるGraph Attention with Structures (GRASS)を紹介する。
GRASSはランダムな正規グラフを重畳して入力グラフをリワイヤし、長距離情報伝搬を実現する。
また、グラフ構造化データに適した新しい付加的注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-08T06:21:56Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - An end-to-end attention-based approach for learning on graphs [8.552020965470113]
グラフ上で学習するためのトランスフォーマーベースのアーキテクチャは、効果的な学習メカニズムとして注目によって動機付けられている。
本稿では,エンコーダとアテンションプーリング機構を組み合わせた,純粋に注意に基づくアプローチを提案する。
その単純さにもかかわらず、このアプローチは微調整されたメッセージパッシングベースラインよりも優れており、最近70以上のノードとグラフレベルのタスクでトランスフォーマーベースのメソッドが提案されている。
論文 参考訳(メタデータ) (2024-02-16T16:20:11Z) - Expander Graph Propagation [0.0]
本稿では,拡張グラフ上での情報伝達に基づくエレガントなアプローチを提案する。
EGPは、セットアップに最小限の労力を要しながら、上記の懸念に対処できることを示します。
我々の分析は、GNNの過剰な監視に対処する、スケーラブルな方法の新たなクラスへの道を開くものだと信じています。
論文 参考訳(メタデータ) (2022-10-06T15:36:37Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Motif-based Graph Self-Supervised Learning forMolecular Property
Prediction [12.789013658551454]
グラフニューラルネットワーク(GNN)は、様々な分子生成および予測タスクにおいて顕著な成功を収めている。
既存のGNN用の自己教師付き事前トレーニングフレームワークのほとんどは、ノードレベルまたはグラフレベルのタスクのみに焦点を当てている。
GNNのための新しい自己教師型モチーフ生成フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T11:45:51Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。