論文の概要: Kernelised Normalising Flows
- arxiv url: http://arxiv.org/abs/2307.14839v4
- Date: Thu, 27 Jun 2024 04:58:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 20:26:08.436071
- Title: Kernelised Normalising Flows
- Title(参考訳): カーネル化された正規化フロー
- Authors: Eshant English, Matthias Kirchler, Christoph Lippert,
- Abstract要約: 正規化フローは、密度推定と生成の二重能力によって特徴づけられる非パラメトリック統計モデルである。
本稿では,カーネルをフレームワークに統合する新しいカーネル正規化フローパラダイムであるFerumal Flowを紹介する。
- 参考スコア(独自算出の注目度): 10.31916245015817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalising Flows are non-parametric statistical models characterised by their dual capabilities of density estimation and generation. This duality requires an inherently invertible architecture. However, the requirement of invertibility imposes constraints on their expressiveness, necessitating a large number of parameters and innovative architectural designs to achieve good results. Whilst flow-based models predominantly rely on neural-network-based transformations for expressive designs, alternative transformation methods have received limited attention. In this work, we present Ferumal flow, a novel kernelised normalising flow paradigm that integrates kernels into the framework. Our results demonstrate that a kernelised flow can yield competitive or superior results compared to neural network-based flows whilst maintaining parameter efficiency. Kernelised flows excel especially in the low-data regime, enabling flexible non-parametric density estimation in applications with sparse data availability.
- Abstract(参考訳): 正規化フローは、密度推定と生成の二重能力によって特徴づけられる非パラメトリック統計モデルである。
この双対性は本質的に可逆的アーキテクチャを必要とする。
しかし、可逆性の要件は表現性に制約を課し、優れた結果を得るためには多数のパラメータと革新的なアーキテクチャ設計が必要である。
フローベースモデルは、主に表現的設計のためのニューラルネットベースの変換に依存しているが、代替変換法は注目されている。
本稿では,カーネルをフレームワークに統合した新しいカーネル正規化フローパラダイムであるFerumal Flowを紹介する。
その結果、パラメータ効率を維持しながら、ニューラルネットワークベースのフローと比較して、カーネル化されたフローは、競争力や優れた結果が得られることを示した。
カーネル化されたフローは、特に低データレシエーションにおいて優れており、スパースデータ可用性のあるアプリケーションで柔軟な非パラメトリック密度推定を可能にする。
関連論文リスト
- Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
本研究では,変数の変動の勾配を効率的に推定する訓練手法を開発した。
これにより、任意の次元保存ニューラルネットワークが、最大限のトレーニングを通じて生成モデルとして機能することが可能になる。
我々は$E(n)$-equivariantネットワークを用いた分子生成ベンチマークにおいて優れた結果を得た。
論文 参考訳(メタデータ) (2023-10-25T13:23:08Z) - Uncertainty quantification of two-phase flow in porous media via
coupled-TgNN surrogate model [6.705438773768439]
地下二相流の不確実性定量化(UQ)は通常、様々な条件下でのフォワードシミュレーションの多数の実行を必要とする。
本研究では, 理論誘導型ニューラルネットワーク(TgNN)をベースとした新しいサロゲートモデルを構築し, 良好な精度で効率を向上する。
論文 参考訳(メタデータ) (2022-05-28T02:33:46Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Distilling the Knowledge from Normalizing Flows [22.578033953780697]
正規化フローは、複数の音声および視覚問題において強力な性能を示す生成モデルの強力なクラスである。
本稿では, 簡易蒸留法を提案し, 画像超解像と音声合成のための現状条件付きフローベースモデルの有効性を実証する。
論文 参考訳(メタデータ) (2021-06-24T00:10:22Z) - Generative Flows with Invertible Attentions [135.23766216657745]
生成フローモデルに対する2種類の非可逆的注意機構を導入する。
フロー特徴写像の2分割毎に注意重みと入力表現を学習するために,分割に基づく注意機構を利用する。
提案手法は, トラクタブルジャコビアン行列を用いた非可逆アテンションモジュールをフローベースモデルの任意の位置にシームレスに統合する。
論文 参考訳(メタデータ) (2021-06-07T20:43:04Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - NanoFlow: Scalable Normalizing Flows with Sublinear Parameter Complexity [28.201670958962453]
正規化フロー(NFs)は、分析確率密度の推定と効率的な合成を可能にする深層生成モデルの顕著な方法となっている。
本稿では,1つのニューラルネットワーク密度推定器を用いて,複数の変換ステージをモデル化するNanoFlowというパラメータ化手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T09:35:00Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
ウィナー過程の微分変形によって駆動される新しいタイプの流れを提案する。
その結果,観測可能なプロセスが基本プロセスの魅力的な特性の多くを継承するリッチ時系列モデルが得られた。
論文 参考訳(メタデータ) (2020-02-24T20:13:43Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。