論文の概要: Understanding Forward Process of Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2307.15090v2
- Date: Fri, 1 Dec 2023 08:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 18:20:51.729061
- Title: Understanding Forward Process of Convolutional Neural Network
- Title(参考訳): 畳み込みニューラルネットワークの前進過程の理解
- Authors: Peixin Tian
- Abstract要約: 本稿では,CNNの前方処理における選択的回転について述べる。
これは、入力データの回転面を統一し定量化する識別機構として活性化関数を解明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reveal the selective rotation in the CNNs' forward processing. It
elucidates the activation function as a discerning mechanism that unifies and
quantizes the rotational aspects of the input data. Experiments show how this
defined methodology reflects the progress network distinguish inputs based on
statistical indicators, which can be comprehended or analyzed by applying
structured mathematical tools. Our findings also unveil the consistency between
artificial neural networks and the human brain in their data processing
pattern.
- Abstract(参考訳): 本稿では,cnnのフォワード処理における選択的回転について述べる。
アクティベーション関数を、入力データの回転的側面を統一し、定量化する識別機構として解明する。
実験は、この定義された方法論が、統計指標に基づいて入力を区別するプログレスネットワークを反映していることを示す。
また,データ処理パターンにおけるニューラルネットワークと人間の脳との整合性も明らかにした。
関連論文リスト
- Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Relational Composition in Neural Networks: A Survey and Call to Action [54.47858085003077]
多くのニューラルネットは、データを「機能ベクトル」の線形結合として表現しているように見える。
我々は、この成功は関係性の構成を理解せずに不完全であると主張する。
論文 参考訳(メタデータ) (2024-07-19T20:50:57Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - Decomposing neural networks as mappings of correlation functions [57.52754806616669]
本研究では,ディープフィードフォワードネットワークによって実装された確率分布のマッピングについて検討する。
ニューラルネットワークで使用できる異なる情報表現と同様に、データに不可欠な統計を識別する。
論文 参考訳(メタデータ) (2022-02-10T09:30:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
ニューラルネットワークの計算の非線形性を定量化する複雑性の概念を定義する。
トレーニング対象ネットワークとトレーニング対象ネットワークの動的特性の両面から,これらのオブザーバブルについて検討する。
論文 参考訳(メタデータ) (2020-06-08T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。