Supervised Homography Learning with Realistic Dataset Generation
- URL: http://arxiv.org/abs/2307.15353v2
- Date: Tue, 15 Aug 2023 05:04:26 GMT
- Title: Supervised Homography Learning with Realistic Dataset Generation
- Authors: Hai Jiang, Haipeng Li, Songchen Han, Haoqiang Fan, Bing Zeng,
Shuaicheng Liu
- Abstract summary: We propose an iterative framework, which consists of two phases: a generation phase and a training phase.
In the generation phase, given an unlabeled image pair, we utilize the pre-estimated dominant plane masks and homography of the pair.
In the training phase, the generated data is used to train the supervised homography network.
- Score: 60.934401870005026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an iterative framework, which consists of two
phases: a generation phase and a training phase, to generate realistic training
data and yield a supervised homography network. In the generation phase, given
an unlabeled image pair, we utilize the pre-estimated dominant plane masks and
homography of the pair, along with another sampled homography that serves as
ground truth to generate a new labeled training pair with realistic motion. In
the training phase, the generated data is used to train the supervised
homography network, in which the training data is refined via a content
consistency module and a quality assessment module. Once an iteration is
finished, the trained network is used in the next data generation phase to
update the pre-estimated homography. Through such an iterative strategy, the
quality of the dataset and the performance of the network can be gradually and
simultaneously improved. Experimental results show that our method achieves
state-of-the-art performance and existing supervised methods can be also
improved based on the generated dataset. Code and dataset are available at
https://github.com/JianghaiSCU/RealSH.
Related papers
- Enhancing pretraining efficiency for medical image segmentation via transferability metrics [0.0]
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge.
We introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data.
arXiv Detail & Related papers (2024-10-24T12:11:52Z) - MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators [4.5353840616537555]
Graph Network Simulators (GNS) have emerged as the leading method for modeling physical phenomena.
We have constructed a high-quality physical simulation dataset encompassing 1D, 2D, and 3D scenes.
A key feature of our dataset is the inclusion of precise multi-body dynamics, facilitating a more realistic simulation of the physical world.
arXiv Detail & Related papers (2024-10-04T03:03:06Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Deep Learning Based Face Recognition Method using Siamese Network [0.0]
We propose employing Siamese networks for face recognition, eliminating the need for labeled face images.
We achieve this by strategically leveraging negative samples alongside nearest neighbor counterparts.
The proposed unsupervised system delivers a performance on par with a similar but fully supervised baseline.
arXiv Detail & Related papers (2023-12-21T16:35:11Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - GAN-Supervised Dense Visual Alignment [95.37027391102684]
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end.
Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode.
arXiv Detail & Related papers (2021-12-09T18:59:58Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
This paper presents a new framework for human body part segmentation based on Deep Convolutional Neural Networks trained using only synthetic data.
The proposed approach achieves cutting-edge results without the need of training the models with real annotated data of human body parts.
arXiv Detail & Related papers (2021-02-02T12:26:50Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - SemI2I: Semantically Consistent Image-to-Image Translation for Domain
Adaptation of Remote Sensing Data [7.577893526158495]
We propose a new data augmentation approach that transfers the style of test data to training data using generative adversarial networks.
Our semantic segmentation framework consists in first training a U-net from the real training data and then fine-tuning it on the test stylized fake training data generated by the proposed approach.
arXiv Detail & Related papers (2020-02-14T09:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.