論文の概要: Toward Transparent Sequence Models with Model-Based Tree Markov Model
- arxiv url: http://arxiv.org/abs/2307.15367v1
- Date: Fri, 28 Jul 2023 07:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 13:22:14.724211
- Title: Toward Transparent Sequence Models with Model-Based Tree Markov Model
- Title(参考訳): モデルベースツリーマルコフモデルを用いた透明シーケンスモデルに向けて
- Authors: Chan Hsu, Wei-Chun Huang, Jun-Ting Wu, Chih-Yuan Li, Yihuang Kang
- Abstract要約: モデルベース木隠れセミマルコフモデル(MOB-HSMM)を提案する。
このモデルは、Deep Neural Networks (DNN)から抽出した知識を活用し、明確な説明を提供しながら予測性能を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we address the interpretability issue in complex, black-box
Machine Learning models applied to sequence data. We introduce the Model-Based
tree Hidden Semi-Markov Model (MOB-HSMM), an inherently interpretable model
aimed at detecting high mortality risk events and discovering hidden patterns
associated with the mortality risk in Intensive Care Units (ICU). This model
leverages knowledge distilled from Deep Neural Networks (DNN) to enhance
predictive performance while offering clear explanations. Our experimental
results indicate the improved performance of Model-Based trees (MOB trees) via
employing LSTM for learning sequential patterns, which are then transferred to
MOB trees. Integrating MOB trees with the Hidden Semi-Markov Model (HSMM) in
the MOB-HSMM enables uncovering potential and explainable sequences using
available information.
- Abstract(参考訳): 本研究では,シーケンスデータに適用した複雑なブラックボックス機械学習モデルにおける解釈可能性の問題に対処する。
モデルベース木隠れセミマルコフモデル(MOB-HSMM)は,高死亡リスク事象の検出と集中治療室(ICU)の死亡リスクに関連する隠れパターンの発見を目的とした,本質的に解釈可能なモデルである。
このモデルは、Deep Neural Networks (DNN)から抽出した知識を活用し、明確な説明を提供しながら予測性能を向上させる。
実験の結果,モデルベースツリー(MOB木)の性能はLSTMを用いて逐次パターンを学習し,MOB木に転送することで向上した。
MOB-HSMMでHidden Semi-Markov Model (HSMM) とMOBツリーを統合することで、利用可能な情報を用いて潜在的および説明可能なシーケンスを明らかにすることができる。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
近年、ディープニューラルネットワークアーキテクチャにおける線形状態空間モデル(SSM)の統合への関心が高まっている。
本論文は、制御理論者のためのSSMベースのアーキテクチャの穏やかな導入を目的としたものである。
もっとも成功したSSM提案の体系的なレビューを提供し、コントロール理論の観点から主要な特徴を強調している。
論文 参考訳(メタデータ) (2024-03-25T16:10:47Z) - Leveraging Model-based Trees as Interpretable Surrogate Models for Model
Distillation [3.5437916561263694]
代理モデルは、複雑で強力なブラックボックス機械学習モデルを振り返りに解釈する上で重要な役割を果たす。
本稿では,決定規則により特徴空間を解釈可能な領域に分割する代理モデルとしてモデルベースツリーを用いることに焦点を当てる。
4つのモデルベースツリーアルゴリズム(SLIM, GUIDE, MOB, CTree)を比較した。
論文 参考訳(メタデータ) (2023-10-04T19:06:52Z) - Sparse Modular Activation for Efficient Sequence Modeling [94.11125833685583]
線形状態空間モデルと自己アテンション機構を組み合わせた最近のモデルでは、様々なシーケンスモデリングタスクにおいて顕著な結果が示されている。
現在のアプローチでは、アテンションモジュールを静的かつ均一に入力シーケンスのすべての要素に適用し、最適以下の品質効率のトレードオフをもたらす。
SMA(Sparse Modular Activation)は,ニューラルネットワークが配列要素のサブモジュールを異なる方法でスパースに活性化する機構である。
論文 参考訳(メタデータ) (2023-06-19T23:10:02Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Unsupervised Neural Hidden Markov Models with a Continuous latent state
space [24.316047317028147]
本研究では,非教師付き隠れマルコフモデルに対して,連続例でニューラル化を行う新しい手法を提案する。
これにより、下層の潜伏変数で問題を解決する柔軟性が向上する。
論文 参考訳(メタデータ) (2021-06-10T11:53:38Z) - Robust Classification using Hidden Markov Models and Mixtures of
Normalizing Flows [25.543231171094384]
我々は,隠れマルコフモデル(HMM)の状態遷移と,隠れたHMMの状態に対するニューラルネットワークに基づく確率分布を組み合わせた生成モデルを用いる。
音声認識への応用におけるNMM-HMM分類器の堅牢性の改善を検証する。
論文 参考訳(メタデータ) (2021-02-15T00:40:30Z) - Scaling Hidden Markov Language Models [118.55908381553056]
この研究は、HMMを言語モデリングデータセットに拡張するという課題を再考する。
本研究では,HMMを大規模状態空間に拡張する手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T18:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。