論文の概要: SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction
- arxiv url: http://arxiv.org/abs/2406.10962v1
- Date: Sun, 16 Jun 2024 14:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:42:48.784501
- Title: SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction
- Title(参考訳): SynthTree: 説明可能な予測のための共監督型局所モデル合成
- Authors: Evgenii Kuriabov, Jia Li,
- Abstract要約: 本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
- 参考スコア(独自算出の注目度): 15.832975722301011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable machine learning (XML) has emerged as a major challenge in artificial intelligence (AI). Although black-box models such as Deep Neural Networks and Gradient Boosting often exhibit exceptional predictive accuracy, their lack of interpretability is a notable drawback, particularly in domains requiring transparency and trust. This paper tackles this core AI problem by proposing a novel method to enhance explainability with minimal accuracy loss, using a Mixture of Linear Models (MLM) estimated under the co-supervision of black-box models. We have developed novel methods for estimating MLM by leveraging AI techniques. Specifically, we explore two approaches for partitioning the input space: agglomerative clustering and decision trees. The agglomerative clustering approach provides greater flexibility in model construction, while the decision tree approach further enhances explainability, yielding a decision tree model with linear or logistic regression models at its leaf nodes. Comparative analyses with widely-used and state-of-the-art predictive models demonstrate the effectiveness of our proposed methods. Experimental results show that statistical models can significantly enhance the explainability of AI, thereby broadening their potential for real-world applications. Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
- Abstract(参考訳): 人工知能(AI)において、説明可能な機械学習(XML)が大きな課題となっている。
Deep Neural NetworksやGradient Boostingのようなブラックボックスモデルは、しばしば例外的な予測精度を示すが、その解釈可能性の欠如は、特に透明性と信頼を必要とする領域において顕著な欠点である。
本稿では,ブラックボックスモデルと組み合わせて推定した線形モデル混合モデル(MLM)を用いて,最小精度の損失で説明可能性を向上させる新しい手法を提案する。
我々は,AI技術を活用してMLMを推定する新しい手法を開発した。
具体的には,集合的クラスタリングと決定木という,入力空間を分割する2つのアプローチについて検討する。
集合的クラスタリングアプローチはモデル構築の柔軟性を高める一方、決定木アプローチはさらに説明可能性を高め、葉ノードに線形またはロジスティック回帰モデルを持つ決定木モデルを生成する。
提案手法の有効性を実証するために, 広く用いられている, 最先端の予測モデルとの比較分析を行った。
実験結果から、統計モデルはAIの説明可能性を大幅に向上させ、現実世界の応用の可能性を広げることができることが示された。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF): A Data-Morphology-based Counterfactual Generation Method for Trustworthy Artificial Intelligence [15.415120542032547]
XAIはAIシステムをより理解しやすく信頼性の高いものにしようとしている。
本研究は,データ形態学戦略の価値を解析し,反実的説明を生成する。
ボールのオーバーラップ数(Overlap Number of Balls Model-Agnostic CounterFactuals,ONB-MACF)法を導入している。
論文 参考訳(メタデータ) (2024-05-20T18:51:42Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
ホック後説明可能性法は、ますます複雑なNLPモデルを理解するための重要なツールである。
本稿では,人間の判断を説明するテキストアノテーションをテキスト分類モデルに組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T22:39:33Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Learnability of Competitive Threshold Models [11.005966612053262]
理論的観点から,競合しきい値モデルの学習可能性について検討する。
ニューラルネットワークによって競合しきい値モデルをシームレスにシミュレートする方法を実証する。
論文 参考訳(メタデータ) (2022-05-08T01:11:51Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
パフォーマンスと知性の間のトレードオフは、特に医学のような高度な応用において、しばしば直面する。
本稿では,ジェネリックMLモデルの予測に関する説明を生成するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-15T17:39:19Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。