Scalable Imaginary Time Evolution with Neural Network Quantum States
- URL: http://arxiv.org/abs/2307.15521v4
- Date: Thu, 16 Nov 2023 10:08:56 GMT
- Title: Scalable Imaginary Time Evolution with Neural Network Quantum States
- Authors: Eimantas Ledinauskas and Egidijus Anisimovas
- Abstract summary: The representation of a quantum wave function as a neural network quantum state (NQS) provides a powerful variational ansatz for finding the ground states of many-body quantum systems.
We introduce an approach that bypasses the computation of the metric tensor and instead relies exclusively on first-order descent with Euclidean metric.
We make this method adaptive and stable by determining the optimal time step and keeping the target fixed until the energy of the NQS decreases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The representation of a quantum wave function as a neural network quantum
state (NQS) provides a powerful variational ansatz for finding the ground
states of many-body quantum systems. Nevertheless, due to the complex
variational landscape, traditional methods often employ the computation of
quantum geometric tensor, consequently complicating optimization techniques.
Contributing to efforts aiming to formulate alternative methods, we introduce
an approach that bypasses the computation of the metric tensor and instead
relies exclusively on first-order gradient descent with Euclidean metric. This
allows for the application of larger neural networks and the use of more
standard optimization methods from other machine learning domains. Our approach
leverages the principle of imaginary time evolution by constructing a target
wave function derived from the Schr\"odinger equation, and then training the
neural network to approximate this target. We make this method adaptive and
stable by determining the optimal time step and keeping the target fixed until
the energy of the NQS decreases. We demonstrate the benefits of our scheme via
numerical experiments with 2D J1-J2 Heisenberg model, which showcase enhanced
stability and energy accuracy in comparison to direct energy loss minimization.
Importantly, our approach displays competitiveness with the well-established
density matrix renormalization group method and NQS optimization with
stochastic reconfiguration.
Related papers
- Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
Quantum machine learning through variational quantum algorithms (VQAs) has gained substantial attention in recent years.
This paper introduces the quantum natural pairwise coordinate descent (2QNSCD) optimization method.
We develop a highly sparse unbiased estimator of the novel metric tensor using a quantum circuit with gate complexity $Theta(1)$ times that of the parameterized quantum circuit and single-shot quantum measurements.
arXiv Detail & Related papers (2024-07-18T18:57:29Z) - Variational Optimization for Quantum Problems using Deep Generative Networks [9.011023101133953]
We propose a general approach to design variational optimization algorithms based on generative models.
We apply VGON to three quantum tasks: finding the best state in an entanglement-detection protocol, finding the ground state of a 1D quantum spin model with variational quantum circuits, and generating degenerate ground states of many-body quantum Hamiltonians.
arXiv Detail & Related papers (2024-04-28T00:58:28Z) - Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation [32.73124984242397]
We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_Q$ qubits.
The main applications of this methodology have been the $mathrmH_2$ and $mathrmLiH$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis.
arXiv Detail & Related papers (2023-09-08T16:55:39Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.