A bound on approximating non-Markovian dynamics by tensor networks in
the time domain
- URL: http://arxiv.org/abs/2307.15592v2
- Date: Sun, 22 Oct 2023 17:47:11 GMT
- Title: A bound on approximating non-Markovian dynamics by tensor networks in
the time domain
- Authors: Ilya Vilkoviskiy and Dmitry A. Abanin
- Abstract summary: We show that the spin-boson model can be efficiently simulated using in time computational resources.
This bound indicates that the spin-boson model can be efficiently simulated using in time computational resources.
- Score: 0.9790236766474201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-boson (SB) model plays a central role in studies of dissipative quantum
dynamics, both due its conceptual importance and relevance to a number of
physical systems. Here we provide rigorous bounds of the computational
complexity of the SB model for the physically relevant case of a zero
temperature Ohmic bath. We start with the description of the bosonic bath via
its Feynman-Vernon influence functional (IF), which is a tensor on the space of
spin's trajectories. By expanding the kernel of the IF functional via a sum of
decaying exponentials, we obtain an analytical approximation of the continuous
bath by a finite number of damped bosonic modes. We bound the error induced by
restricting bosonic Hilbert spaces to a finite-dimensional subspace with small
boson numbers, which yields an analytical form of a matrix-product state (MPS)
representation of the IF. We show that the MPS bond dimension $D$ scales
polynomially in the error on physical observables $\epsilon$, as well as in the
evolution time $T$, $D\propto T^4/\epsilon^2$. This bound indicates that the
spin-boson model can be efficiently simulated using polynomial in time
computational resources.
Related papers
- Efficient Pseudomode Representation and Complexity of Quantum Impurity Models [0.7373617024876725]
Out-of-equilibrium fermionic quantum impurity models (QIM) describe a small interacting system coupled to a continuous fermionic bath.
We find efficient bath representations as that of approximating a kernel of the bath's Feynman-Vernon influence functional by a sum of complex exponentials.
To relate our findings to QIM, we derive an explicit Liouvillian that describes the time evolution of the combined impurity-pseudomodes system.
arXiv Detail & Related papers (2024-09-13T13:31:53Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - One-dimensional pseudoharmonic oscillator: classical remarks and
quantum-information theory [0.0]
Motion of a potential that is a combination of positive quadratic and inverse quadratic functions of the position is considered.
The dependence on the particle energy and the factor $mathfraka$ describing a relative strength of its constituents is described.
arXiv Detail & Related papers (2023-04-13T11:50:51Z) - Spin relaxation dynamics with a continuous spin environment: the
dissipaton equation of motion approach [11.335986457834348]
We present the quantum dynamics of a spin coupling to a bath of independent spins via the dissipaton equation of motion (DEOM) approach.
We derive the fluctuation-dissipation theorem (FDT) of the spin bath from a microscopic perspective.
We envision this work provides new insights to extend the hierarchical equations of motion (HEOM) and DEOM approach to certain types of anharmonic enviroments.
arXiv Detail & Related papers (2023-02-01T03:47:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Non-equilibrium quantum impurity problems via matrix-product states in
the temporal domain [0.0]
We propose an approach to analyze impurity dynamics based on the matrix-product state (MPS) representation of the Feynman-Vernon influence functional (IF)
We obtain explicit expressions of the wave function for a family of one-dimensional reservoirs, and analyze the scaling of TE with the evolution time for different reservoir's initial states.
The approach can be applied to a number of experimental setups, including highly non-equilibrium transport via quantum dots and real-time formation of impurity-reservoir correlations.
arXiv Detail & Related papers (2022-05-10T16:05:25Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.