Development of a Boston-area 50-km fiber quantum network testbed
- URL: http://arxiv.org/abs/2307.15696v2
- Date: Fri, 5 Jan 2024 17:11:57 GMT
- Title: Development of a Boston-area 50-km fiber quantum network testbed
- Authors: Eric Bersin, Matthew Grein, Madison Sutula, Ryan Murphy, Yan Qi Huan,
Mark Stevens, Aziza Suleymanzade, Catherine Lee, Ralf Riedinger, David J.
Starling, Pieter-Jan Stas, Can M. Knaut, Neil Sinclair, Daniel R. Assumpcao,
Yan-Cheng Wei, Erik N. Knall, Bartholomeus Machielse, Denis D. Sukachev,
David S. Levonian, Mihir K. Bhaskar, Marko Lon\v{c}ar, Scott Hamilton,
Mikhail Lukin, Dirk Englund, and P. Benjamin Dixon
- Abstract summary: We report on a comprehensive characterization of a Boston-Area Quantum Network (BARQNET) telecom fiber testbed.
Results have utility for future work on the BARQNET as well as other quantum network testbeds in development.
- Score: 0.16125810338427432
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Distributing quantum information between remote systems will necessitate the
integration of emerging quantum components with existing communication
infrastructure. This requires understanding the channel-induced degradations of
the transmitted quantum signals, beyond the typical characterization methods
for classical communication systems. Here we report on a comprehensive
characterization of a Boston-Area Quantum Network (BARQNET) telecom fiber
testbed, measuring the time-of-flight, polarization, and phase noise imparted
on transmitted signals. We further design and demonstrate a compensation system
that is both resilient to these noise sources and compatible with integration
of emerging quantum memory components on the deployed link. These results have
utility for future work on the BARQNET as well as other quantum network
testbeds in development, enabling near-term quantum networking demonstrations
and informing what areas of technology development will be most impactful in
advancing future system capabilities.
Related papers
- Physical Layer Aspects of Quantum Communications: A Survey [31.406787669796184]
Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols.
Main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity.
Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well.
arXiv Detail & Related papers (2024-07-12T13:16:47Z) - Quantum Random Access Codes Implementation for Resource Allocation and Coexistence with Classical Telecommunication [32.73124984242397]
Modern quantum networks have limited capacity to distribute resources among different users.
We experimentally test our encoding and decoding strategy from the resource allocation perspective.
By emulating a coexistent classical communication, we test the resilience of our implementation in presence of noise.
arXiv Detail & Related papers (2024-03-27T20:46:50Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Non-Markovianity in High-Dimensional Open Quantum Systems using Next-generation Multicore Optical Fibers [2.686155376921957]
We study a high-dimensional open quantum system in a multicore optical fiber.
We observe a non-Markovian behaviour of the system.
A better understanding of phase-noise in multicore fibers will improve several real-world communication protocols.
arXiv Detail & Related papers (2023-07-31T19:14:32Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Experimental demonstration of entanglement delivery using a quantum
network stack [1.3684924922685724]
We experimentally demonstrate, using remote solid-state quantum network nodes, a link layer and a physical layer protocol for entanglement-based quantum networks.
Results mark a clear transition from physics experiments to quantum communication systems.
arXiv Detail & Related papers (2021-11-22T16:39:33Z) - Integrating Quantum Simulation for Quantum-Enhanced Classical Network
Emulation [54.08949958349055]
We describe a method of investigating the near-term potential of quantum communication technology for communication networks from the perspective of current networks.
We integrate an instance of the quantum network simulator QuNetSim at the link layer into the communication network emulator ComNetsEmu.
This novel augmented version of ComNetsEmu is thereby enabled to run arbitrary quantum protocols between any directly connected pair of network hosts.
arXiv Detail & Related papers (2021-10-04T13:31:55Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.