Experimental demonstration of entanglement delivery using a quantum
network stack
- URL: http://arxiv.org/abs/2111.11332v2
- Date: Thu, 25 Nov 2021 17:09:11 GMT
- Title: Experimental demonstration of entanglement delivery using a quantum
network stack
- Authors: Matteo Pompili, Carlo Delle Donne, Ingmar te Raa, Bart van der Vecht,
Matthew Skrzypczyk, Guilherme Ferreira, Lisa de Kluijver, Arian J. Stolk,
Sophie L. N. Hermans, Przemys{\l}aw Pawe{\l}czak, Wojciech Kozlowski and
Ronald Hanson, Stephanie Wehner
- Abstract summary: We experimentally demonstrate, using remote solid-state quantum network nodes, a link layer and a physical layer protocol for entanglement-based quantum networks.
Results mark a clear transition from physics experiments to quantum communication systems.
- Score: 1.3684924922685724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling current quantum communication demonstrations to a large-scale quantum
network will require not only advancements in quantum hardware capabilities,
but also robust control of such devices to bridge the gap to user demand.
Moreover, the abstraction of tasks and services offered by the quantum network
should enable platform-independent applications to be executed without
knowledge of the underlying physical implementation. Here we experimentally
demonstrate, using remote solid-state quantum network nodes, a link layer and a
physical layer protocol for entanglement-based quantum networks. The link layer
abstracts the physical-layer entanglement attempts into a robust,
platform-independent entanglement delivery service. The system is used to run
full state tomography of the delivered entangled states, as well as preparation
of a remote qubit state on a server by its client. Our results mark a clear
transition from physics experiments to quantum communication systems, which
will enable the development and testing of components of future quantum
networks.
Related papers
- Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Demonstration of teleportation across a quantum network code [0.0]
We study measurement-based quantum network coding (MQNC), which is a protocol particularly suitable for noisy intermediate-scale quantum devices.
In particular, we develop techniques to adapt MQNC to state-of-the-art superconducting processors and subsequently demonstrate successful teleportation of quantum information.
The teleportation in our demonstration is shown to occur with fidelity higher than could be achieved via classical means, made possible by considering qubits from a polar cap of the Bloch Sphere.
arXiv Detail & Related papers (2022-10-06T12:59:48Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Realization of a multi-node quantum network of remote solid-state qubits [0.45823749779393547]
We report on the experimental realization of a three-node entanglement-based quantum network.
We achieve real-time communication and feed-forward gate operations across the network.
We capitalize on the novel capabilities of this network to realize two canonical protocols without post-selection.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Designing a Quantum Network Protocol [0.0]
We present a quantum network protocol designed to enable end-to-end quantum communication.
One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information.
We show that the protocol is able to deliver its service even in the face of significant losses due to decoherence.
arXiv Detail & Related papers (2020-10-06T09:41:14Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.