Model Synthesis for Zero-Shot Model Attribution
- URL: http://arxiv.org/abs/2307.15977v2
- Date: Wed, 5 Jun 2024 04:00:17 GMT
- Title: Model Synthesis for Zero-Shot Model Attribution
- Authors: Tianyun Yang, Juan Cao, Danding Wang, Chang Xu,
- Abstract summary: generative models are shaping various fields such as art, design, and human-computer interaction.
We propose a model synthesis technique, which generates numerous synthetic models mimicking the fingerprint patterns of real-world generative models.
Our experiments demonstrate that this fingerprint extractor, trained solely on synthetic models, achieves impressive zero-shot generalization on a wide range of real-world generative models.
- Score: 26.835046772924258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, generative models are shaping various fields such as art, design, and human-computer interaction, yet accompanied by challenges related to copyright infringement and content management. In response, existing research seeks to identify the unique fingerprints on the images they generate, which can be leveraged to attribute the generated images to their source models. Existing methods, however, are constrained to identifying models within a static set included in the classifier training, failing to adapt to newly emerged unseen models dynamically. To bridge this gap, we aim to develop a generalized model fingerprint extractor capable of zero-shot attribution, effectively attributes unseen models without exposure during training. Central to our method is a model synthesis technique, which generates numerous synthetic models mimicking the fingerprint patterns of real-world generative models. The design of the synthesis technique is motivated by observations on how the basic generative model's architecture building blocks and parameters influence fingerprint patterns, and it is validated through two designed metrics that examine synthetic models' fidelity and diversity. Our experiments demonstrate that this fingerprint extractor, trained solely on synthetic models, achieves impressive zero-shot generalization on a wide range of real-world generative models, improving model identification and verification accuracy on unseen models by over 40% and 15%, respectively, compared to existing approaches.
Related papers
- Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Downstream Task-Oriented Generative Model Selections on Synthetic Data
Training for Fraud Detection Models [9.754400681589845]
In this paper, we approach the downstream task-oriented generative model selections problem in the case of training fraud detection models.
Our investigation supports that, while both Neural Network(NN)-based and Bayesian Network(BN)-based generative models are both good to complete synthetic training task under loose model interpretability constrain, the BN-based generative models is better than NN-based when synthetic training fraud detection model under strict model interpretability constrain.
arXiv Detail & Related papers (2024-01-01T23:33:56Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
We investigate how to quickly adapt the sample generation of neural network models to observations in robotic tasks.
The key idea is to quickly fine-tune the model by fitting it to generated samples matching the observed evidence.
We show that our method can be applied to both autoregressive models and variational autoencoders.
arXiv Detail & Related papers (2023-10-19T16:11:49Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Model Provenance via Model DNA [23.885185988451667]
We introduce a novel concept of Model DNA which represents the unique characteristics of a machine learning model.
We develop an efficient framework for model provenance identification, which enables us to identify whether a source model is a pre-training model of a target model.
arXiv Detail & Related papers (2023-08-04T03:46:41Z) - Composing Ensembles of Pre-trained Models via Iterative Consensus [95.10641301155232]
We propose a unified framework for composing ensembles of different pre-trained models.
We use pre-trained models as "generators" or "scorers" and compose them via closed-loop iterative consensus optimization.
We demonstrate that consensus achieved by an ensemble of scorers outperforms the feedback of a single scorer.
arXiv Detail & Related papers (2022-10-20T18:46:31Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Learning Robust Representations Of Generative Models Using Set-Based
Artificial Fingerprints [14.191129493685212]
Existing methods approximate the distance between the models via their sample distributions.
We consider unique traces (a.k.a. "artificial fingerprints") as representations of generative models.
We propose a new learning method based on set-encoding and contrastive training.
arXiv Detail & Related papers (2022-06-04T23:20:07Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.