Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking
of Ferromagnetic Layers through Machine Learning
- URL: http://arxiv.org/abs/2307.16052v1
- Date: Sat, 29 Jul 2023 19:03:12 GMT
- Title: Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking
of Ferromagnetic Layers through Machine Learning
- Authors: Pablo S. Cornaglia, Matias Nu\~nez, D. J. Garcia
- Abstract summary: We study a Fibonacci quasicrystalline stacking of ferromagnetic layers, potentially realizable using van der Waals magnetic materials.
We construct a model of this magnetic heterostructure, that displays a complex relationship between geometric frustration and magnetic order in this quasicrystalline system.
We employ a machine learning approach, which proves to be a powerful tool in revealing the complex magnetic behavior of this system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we conduct a comprehensive theoretical analysis of a Fibonacci
quasicrystalline stacking of ferromagnetic layers, potentially realizable using
van der Waals magnetic materials. We construct a model of this magnetic
heterostructure, which includes up to second neighbor interlayer magnetic
interactions, that displays a complex relationship between geometric
frustration and magnetic order in this quasicrystalline system. To navigate the
parameter space and identify distinct magnetic phases, we employ a machine
learning approach, which proves to be a powerful tool in revealing the complex
magnetic behavior of this system. We offer a thorough description of the
magnetic phase diagram as a function of the model parameters. Notably, we
discover among other collinear and non-collinear phases, a unique ferromagnetic
alternating helical phase. In this non-collinear quasiperiodic ferromagnetic
configuration the magnetization decreases logarithmically with the stack
height.
Related papers
- Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
We study the effect of altermagnetism on the superconductivity of a two-dimensional metal with d-wave altermagnetism and Rashba spin-orbital coupling.
We show that a number of topological superconductors, including both first-order and second-order ones, can emerge when the p-wave pairing dominates.
arXiv Detail & Related papers (2023-05-17T18:00:00Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Non-volatile Electric Control of Magnetic and Topological Properties of
MnBi2Te4 Thin Films [66.02797153096846]
We propose a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling.
This mechanism uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material.
arXiv Detail & Related papers (2022-12-29T14:51:05Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - In situ transport characterization of magnetic states in Nb/Co
superconductor/ferromagnet heterostructures [0.0]
We study experimentally in-plane transport properties of Nb/Co multilayers.
We demonstrate how FORC can be used for detailed in situ characterization of magnetic states.
arXiv Detail & Related papers (2022-04-26T14:06:18Z) - Nanoscale magnetism probed in a matter-wave interferometer [0.0]
We study alkali atoms, organic radicals and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less than a nuclear magneton.
We find evidence for magnetization of a supersonic beam of organic radicals and, most notably, observe a strong magnetic response of a thermal C$_60$ beam consistent with high-temperature atom-like deflection of rotational magnetic moments.
arXiv Detail & Related papers (2022-03-22T16:42:48Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Picoscale Magnetoelasticity Governs Heterogeneous Magnetic Domains in a
Noncentrosymmetric Ferromagnetic Weyl Semimetal [0.0]
We use a scanning SQUID microscope to image spontaneous magnetization and magnetic susceptibility of CeAlSi.
metastable domains embody a type of frustrated or glassy magnetic phase, with excitations that may be of an emergent and exotic nature.
We show how these domains form, how they interact, and how they can be manipulated or stabilized with estimated lattice strains on picometer levels.
arXiv Detail & Related papers (2020-11-12T02:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.