論文の概要: A hybrid approach for improving U-Net variants in medical image
segmentation
- arxiv url: http://arxiv.org/abs/2307.16462v1
- Date: Mon, 31 Jul 2023 07:43:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 15:31:20.035875
- Title: A hybrid approach for improving U-Net variants in medical image
segmentation
- Title(参考訳): 医用画像分割におけるU-Net変異の改善のためのハイブリッドアプローチ
- Authors: Aitik Gupta, Dr. Joydip Dhar
- Abstract要約: 医学的イメージを様々なセグメントや興味のある領域に分割する技術は、医学的イメージセグメンテーションとして知られている。
生成されたセグメント画像は、診断、手術計画、治療評価など、さまざまな用途に利用することができる。
本研究の目的は,深層的に分離可能な畳み込みを用いたネットワークパラメータ要求の低減である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation is vital to the area of medical imaging because it
enables professionals to more accurately examine and understand the information
offered by different imaging modalities. The technique of splitting a medical
image into various segments or regions of interest is known as medical image
segmentation. The segmented images that are produced can be used for many
different things, including diagnosis, surgery planning, and therapy
evaluation.
In initial phase of research, major focus has been given to review existing
deep-learning approaches, including researches like MultiResUNet, Attention
U-Net, classical U-Net, and other variants. The attention feature vectors or
maps dynamically add important weights to critical information, and most of
these variants use these to increase accuracy, but the network parameter
requirements are somewhat more stringent. They face certain problems such as
overfitting, as their number of trainable parameters is very high, and so is
their inference time.
Therefore, the aim of this research is to reduce the network parameter
requirements using depthwise separable convolutions, while maintaining
performance over some medical image segmentation tasks such as skin lesion
segmentation using attention system and residual connections.
- Abstract(参考訳): 医療画像のセグメンテーションは、異なる画像モードによって提供される情報をより正確に検査し理解することを可能にするため、医療画像領域において不可欠である。
医学的イメージを様々なセグメントや興味のある領域に分割する技術は、医学的イメージセグメンテーションとして知られている。
生成されたセグメント画像は、診断、手術計画、治療評価など、さまざまな用途に利用することができる。
研究の初期段階では、MultiResUNet、Atention U-Net、古典的なU-Netなど、既存のディープラーニングアプローチのレビューに重点が置かれている。
アテンション特徴ベクトルやマップは重要な情報に動的に重要な重み付けを与え、これらの変種の多くはそれらを用いて精度を高めるが、ネットワークパラメータの要求はやや厳密である。
トレーニング可能なパラメータの数が非常に多く、推論時間も高いため、オーバーフィッティングのような特定の問題に直面します。
そこで本研究の目的は,注意システムや残差接続を用いた皮膚病変のセグメンテーションなどの医療画像セグメンテーションタスクの性能を維持しつつ,深部分離可能な畳み込みを用いたネットワークパラメータ要求の低減である。
関連論文リスト
- QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - A Recent Survey of Vision Transformers for Medical Image Segmentation [2.4895533667182703]
ヴィジュアルトランスフォーマー(ViT)は、医用画像セグメンテーションの課題に対処するための有望な技術として登場した。
マルチスケールアテンション機構により、遠方構造間の長距離依存を効果的にモデル化することができる。
近年、研究者らは、ハイブリッドビジョントランスフォーマー(HVT)として知られるアーキテクチャにCNNを組み込む様々なViTベースのアプローチを考案した。
論文 参考訳(メタデータ) (2023-12-01T14:54:44Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
低解像度医用画像から様々な大きさの病変を適応的に分割する,スケールアウェアな超解像ネットワークを提案する。
提案するネットワークは,他の最先端手法と比較して一貫した改善を実現した。
論文 参考訳(メタデータ) (2023-05-30T14:25:55Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Few-shot Medical Image Segmentation with Cycle-resemblance Attention [20.986884555902183]
医用画像セマンティックセグメンテーション分野における注目度は少ない。
本稿では,医療画像分割ネットワークを提案する。
本稿では,クエリと医用画像のサポートのピクセルワイド関係をフル活用するための新しいCRAモジュールを提案する。
論文 参考訳(メタデータ) (2022-12-07T21:55:26Z) - MKIS-Net: A Light-Weight Multi-Kernel Network for Medical Image
Segmentation [7.587725015524997]
マルチカーネル画像分割網(MKIS-Net)を提案する。
MKIS-Netは、少数のトレーニング可能なパラメータを持つ軽量アーキテクチャである。
網膜血管のセグメンテーション,皮膚病変のセグメンテーション,胸部X線セグメンテーションなどにおけるMKIS-Netの有効性について検討した。
論文 参考訳(メタデータ) (2022-10-15T02:46:28Z) - Medical Image Segmentation on MRI Images with Missing Modalities: A
Review [3.9548535445908928]
本研究の主な目的は、欠落したモダリティ補償ネットワークの性能評価を提供することである。
この問題のネガティブな影響を軽減するために、様々なアプローチが時間をかけて開発されてきた。
論文 参考訳(メタデータ) (2022-03-11T19:33:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Interactive Deep Refinement Network for Medical Image Segmentation [13.698408475104452]
従来のセマンティックセグメンテーションネットワークを改善するための対話型ディープリファインメントフレームワークを提案する。
提案するフレームワークでは,従来のセグメンテーションネットワークに改良ネットワークを追加し,結果を改善した。
公開データセットによる実験結果から,提案手法が他の最先端手法よりも高い精度を達成できることが判明した。
論文 参考訳(メタデータ) (2020-06-27T08:24:46Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。