論文の概要: Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models
- arxiv url: http://arxiv.org/abs/2308.00304v3
- Date: Tue, 16 Jul 2024 20:09:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 23:28:28.711907
- Title: Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models
- Title(参考訳): Skills-in-Context Prompting:大規模言語モデルにおける構成性の解き放つ
- Authors: Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, Jianshu Chen,
- Abstract要約: 大規模言語モデル(LLM)における構成一般化能力の活用法について検討する。
我々は,これらのスキルに基礎を置く基礎的スキルと構成的事例の両方を同じプロンプト・コンテキストで示すことが重要であることを発見した。
SKiC型データを用いた微調整LDMは、ゼロショット弱強一般化を導出できることを示す。
- 参考スコア(独自算出の注目度): 68.18370230899102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate how to elicit compositional generalization capabilities in large language models (LLMs). Compositional generalization empowers LLMs to solve complex problems by combining foundational skills, a critical reasoning ability akin to human intelligence. However, even the most advanced LLMs currently struggle with this form of reasoning. We examine this problem within the framework of in-context learning and find that demonstrating both foundational skills and compositional examples grounded in these skills within the same prompt context is crucial. We refer to this prompt structure as skills-in-context (SKiC). With as few as two exemplars, this in-context learning structure enables LLMs to tackle more challenging problems requiring innovative skill combinations, achieving near-perfect systematic generalization across a broad range of tasks. Intriguingly, SKiC also unlocks the latent potential of LLMs, allowing them to more actively utilize pre-existing internal skills acquired during earlier pretraining stages to solve complex reasoning problems. The SKiC structure is robust across different skill constructions and exemplar choices and demonstrates strong transferability to new tasks. Finally, inspired by our in-context learning study, we show that fine-tuning LLMs with SKiC-style data can elicit zero-shot weak-to-strong generalization, enabling the models to solve much harder problems directly with standard prompting.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)における合成一般化能力の活用方法について検討する。
構成的一般化は、人間の知性に似た重要な推論能力である基礎的スキルを組み合わせることによって、LCMに複雑な問題を解決する権限を与える。
しかし、最も先進的なLSMでさえ、このタイプの推論に苦戦している。
我々は,この問題を文脈内学習の枠組みの中で検討し,これらのスキルに根ざした基礎的スキルと構成的事例の両方を同じプロンプトの文脈で示すことが重要であることを発見した。
本稿では,このプロンプト構造をスキル・イン・コンテクスト(SKiC)と呼ぶ。
2つの例に限らず、この文脈内学習構造により、LLMは革新的なスキルの組み合わせを必要とするより困難な問題に取り組み、幅広いタスクにわたってほぼ完璧な体系的一般化を実現することができる。
興味深いことに、SKiCはLSMの潜在可能性を解き、既存の内部スキルをより積極的に活用して複雑な推論問題を解決することができる。
SKiCの構造は、異なるスキル構成や模範的な選択にまたがって堅牢であり、新しいタスクへの強い伝達性を示す。
最後に,本研究では,SKiC型データを用いた微調整LDMを用いて,ゼロショットの弱強一般化を導出し,モデルが標準的プロンプトで直接的にはるかに難しい問題を解けることを示す。
関連論文リスト
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
我々は,Bloomの分類にインスパイアされた新しいプロンプト技術であるBloomWiseを導入し,Large Language Models(LLMs)の性能を向上させる。
より洗練された認知スキルを身につける必要性に関する決定は、LLMによる自己評価に基づいている。
4つの一般的な算数推論データセットの広範な実験において,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-05T09:27:52Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる印象的な機能を示している。
本稿では,LLMの複雑な論理的推論能力の体系的評価について述べる。
LLMは一般世界の知識の推論に優れるが、専門分野固有の知識では重大な課題に直面している。
論文 参考訳(メタデータ) (2024-07-30T05:40:32Z) - Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
大規模言語モデル(LLM)は多くのAI問題に対する強力なツールとして登場した。
また、ICL(In-context Learning)機能も備えている。
複合的なタスクにどのようにアプローチするかは、未解明の未解決の問題のままである。
論文 参考訳(メタデータ) (2024-07-22T15:22:34Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
本稿では,Large Language Models (LLMs) のパズル解法における能力について検討する。
以上の結果から,LLM能力と人為的推論の相違が明らかとなった。
この調査は、LLMのパズル解決能力を向上させるために、新しい戦略とよりリッチなデータセットの必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-17T14:19:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - When does In-context Learning Fall Short and Why? A Study on
Specification-Heavy Tasks [54.71034943526973]
In-context Learning (ICL)は、大規模言語モデル(LLM)のデフォルトメソッドとなっている。
ICLは、複雑で広範囲なタスク仕様を持つタスクである、仕様の重いタスクを処理できないことが分かりました。
我々は、コンテキストを具体的に理解できないこと、タスクスキーマが人間と理解できないこと、長文理解が不十分であること、の3つの主な理由を識別する。
論文 参考訳(メタデータ) (2023-11-15T14:26:30Z) - Collaborating with language models for embodied reasoning [30.82976922056617]
複雑で曖昧な環境での推論は、強化学習(RL)エージェントの重要な目標である。
本稿では,ゼロショットを一般化し,障害事例を調査するシステムの能力を検証し,推論を必要とする一連のタスクを提案する。
論文 参考訳(メタデータ) (2023-02-01T21:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。