論文の概要: MetaGPT: Meta Programming for Multi-Agent Collaborative Framework
- arxiv url: http://arxiv.org/abs/2308.00352v2
- Date: Wed, 2 Aug 2023 04:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 10:13:42.469624
- Title: MetaGPT: Meta Programming for Multi-Agent Collaborative Framework
- Title(参考訳): MetaGPT: マルチエージェント協調フレームワークのためのメタプログラミング
- Authors: Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu
- Abstract要約: メタプログラミングアプローチとして有効な人間を多エージェントコラボレーションに注入する,革新的なフレームワークであるMetaGPTを紹介する。
特にMetaGPTは、まずSOP(Standardized Operating Procedures)をプロンプトにエンコードし、構造化された調整を促進する。
そして、アウトプットの検証と複合的なエラーの低減のために、ドメイン専門のエージェントに人間の専門職を並列させることによって、モジュラー出力をさらに管理する。
- 参考スコア(独自算出の注目度): 10.179351417191235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, remarkable progress has been made in automated task-solving through
the use of multi-agents driven by large language models (LLMs). However,
existing works primarily focuses on simple tasks lacking exploration and
investigation in complicated tasks mainly due to the hallucination problem.
This kind of hallucination gets amplified infinitely as multiple intelligent
agents interact with each other, resulting in failures when tackling
complicated problems.Therefore, we introduce MetaGPT, an innovative framework
that infuses effective human workflows as a meta programming approach into
LLM-driven multi-agent collaboration. In particular, MetaGPT first encodes
Standardized Operating Procedures (SOPs) into prompts, fostering structured
coordination. And then, it further mandates modular outputs, bestowing agents
with domain expertise paralleling human professionals to validate outputs and
reduce compounded errors. In this way, MetaGPT leverages the assembly line work
model to assign diverse roles to various agents, thus establishing a framework
that can effectively and cohesively deconstruct complex multi-agent
collaborative problems. Our experiments conducted on collaborative software
engineering tasks illustrate MetaGPT's capability in producing comprehensive
solutions with higher coherence relative to existing conversational and
chat-based multi-agent systems. This underscores the potential of incorporating
human domain knowledge into multi-agents, thus opening up novel avenues for
grappling with intricate real-world challenges. The GitHub repository of this
project is made publicly available on: https://github.com/geekan/MetaGPT
- Abstract(参考訳): 近年,大規模言語モデル(llm)によるマルチエイジェントによるタスク自動解決において顕著な進歩がみられている。
しかし、既存の研究は主に幻覚の問題による複雑なタスクの探索と調査を欠いた単純なタスクに焦点を当てている。
この種の幻覚は、複数の知的エージェントが相互に相互作用することで無限に増幅され、複雑な問題に取り組む際に失敗する。それ以前には、LLM駆動のマルチエージェントコラボレーションにメタプログラミングアプローチとして効果的なヒューマンワークフローを注入する革新的フレームワークであるMetaGPTを紹介した。
特にMetaGPTは、まずSOP(Standardized Operating Procedures)をプロンプトにエンコードし、構造化された調整を促進する。
そして、アウトプットの検証と複合的なエラーの低減のために、ドメイン専門のエージェントに人間のプロフェッショナルを並列させる。
このように、metagptは、様々なエージェントに多様な役割を割り当てるためにアセンブリラインワークモデルを利用して、複雑なマルチエージェント協調問題を効果的かつ凝集的に分解するフレームワークを構築します。
本稿では,既存の対話型・チャット型マルチエージェントシステムに対して,協調性の高い包括的ソリューションを開発する上で,MetaGPTの能力を示す実験を行った。
これは、人間のドメイン知識をマルチエイジェントに組み込む可能性の基礎となり、複雑な現実世界の課題に取り組むための新しい道を開く。
このプロジェクトのGitHubリポジトリは、https://github.com/geekan/MetaGPTで公開されている。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Meta-Task Planning for Language Agents [13.550774629515843]
大規模言語モデルベースエージェント(LLMエージェント)は、人工知能(AGI)を実現するための有望なパラダイムとして登場した。
本稿では,メタタスク計画(Meta-Task Planning, MTP)を紹介する。
MTPはTravelPlannerで平均$sim40%$成功率を達成した。
論文 参考訳(メタデータ) (2024-05-26T10:33:17Z) - Language Agents as Optimizable Graphs [31.220547147952278]
本稿では,Large Language Models (LLM) ベースのエージェントを計算グラフとして記述する。
我々のフレームワークは、様々なLSMエージェントを効率的に開発し、統合し、自動的に改善するために使用することができる。
論文 参考訳(メタデータ) (2024-02-26T18:48:27Z) - Executable Code Actions Elicit Better LLM Agents [76.95566120678787]
この研究は、Pythonコードを使用して、Large Language Model(LLM)エージェントのアクションを統一されたアクション空間(CodeAct)に統合することを提案する。
Pythonインタプリタと統合されたCodeActは、コードアクションを実行し、事前アクションを動的に修正したり、マルチターンインタラクションを通じて新しい観察に新しいアクションを発行することができる。
CodeActのパフォーマンス向上は、解釈可能なコードを実行し、自然言語を使ってユーザとコラボレーションすることで、環境と対話するオープンソースのLLMエージェントを構築する動機となります。
論文 参考訳(メタデータ) (2024-02-01T21:38:58Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Multi-Agent Consensus Seeking via Large Language Models [6.922356864800498]
大規模言語モデル(LLM)によって駆動されるマルチエージェントシステムは、複雑なタスクを協調的に解決する有望な能力を示している。
この研究は、マルチエージェントコラボレーションにおける根本的な問題であるコンセンサス探索について考察する。
論文 参考訳(メタデータ) (2023-10-31T03:37:11Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。