Multiscale Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification
- URL: http://arxiv.org/abs/2308.00428v4
- Date: Wed, 18 Sep 2024 09:00:30 GMT
- Title: Multiscale Feature Learning Using Co-Tuplet Loss for Offline Handwritten Signature Verification
- Authors: Fu-Hsien Huang, Hsin-Min Lu,
- Abstract summary: We introduce the MultiScale Signature feature learning Network (MS-SigNet) with the co-tuplet loss.
MS-SigNet learns both global and regional signature features from multiple spatial scales, enhancing feature discrimination.
We also present HanSig, a large-scale Chinese signature dataset to support robust system development for this language.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handwritten signature verification, crucial for legal and financial institutions, faces challenges including inter-writer similarity, intra-writer variations, and limited signature samples. To address these, we introduce the MultiScale Signature feature learning Network (MS-SigNet) with the co-tuplet loss, a novel metric learning loss designed for offline handwritten signature verification. MS-SigNet learns both global and regional signature features from multiple spatial scales, enhancing feature discrimination. This approach effectively distinguishes genuine signatures from skilled forgeries by capturing overall strokes and detailed local differences. The co-tuplet loss, focusing on multiple positive and negative examples, overcomes the limitations of typical metric learning losses by addressing inter-writer similarity and intra-writer variations and emphasizing informative examples. We also present HanSig, a large-scale Chinese signature dataset to support robust system development for this language. The dataset is accessible at \url{https://github.com/hsinmin/HanSig}. Experimental results on four benchmark datasets in different languages demonstrate the promising performance of our method in comparison to state-of-the-art approaches.
Related papers
- signwriting-evaluation: Effective Sign Language Evaluation via SignWriting [3.484261625026626]
This paper introduces a comprehensive suite of evaluation metrics specifically designed for SignWriting.
We address the challenges of evaluating single signs versus continuous signing.
Our findings reveal the strengths and limitations of each metric, offering valuable insights for future advancements.
arXiv Detail & Related papers (2024-10-17T15:28:45Z) - MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - MetaScript: Few-Shot Handwritten Chinese Content Generation via
Generative Adversarial Networks [15.037121719502606]
We propose MetaScript, a novel content generation system designed to address the diminishing presence of personal handwriting styles in the digital representation of Chinese characters.
Our approach harnesses the power of few-shot learning to generate Chinese characters that retain the individual's unique handwriting style and maintain the efficiency of digital typing.
arXiv Detail & Related papers (2023-12-25T17:31:19Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora.
We propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER)
Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches.
arXiv Detail & Related papers (2023-08-17T16:02:29Z) - Revisiting Multimodal Representation in Contrastive Learning: From Patch
and Token Embeddings to Finite Discrete Tokens [76.40196364163663]
We propose a learning-based vision-language pre-training approach, such as CLIP.
We show that our method can learn more comprehensive representations and capture meaningful cross-modal correspondence.
arXiv Detail & Related papers (2023-03-27T00:58:39Z) - Global-local Enhancement Network for NMFs-aware Sign Language
Recognition [135.30357113518127]
We propose a simple yet effective architecture called Global-local Enhancement Network (GLE-Net)
Of the two streams, one captures the global contextual relationship, while the other stream captures the discriminative fine-grained cues.
We introduce the first non-manual-features-aware isolated Chinese sign language dataset with a total vocabulary size of 1,067 sign words in daily life.
arXiv Detail & Related papers (2020-08-24T13:28:55Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z) - FCN+RL: A Fully Convolutional Network followed by Refinement Layers to
Offline Handwritten Signature Segmentation [3.3144312096837325]
We propose an approach to locate and extract the pixels of handwritten signatures on identification documents.
The technique is based on a fully convolutional encoder-decoder network combined with a block of refinement layers for the alpha channel of the predicted image.
arXiv Detail & Related papers (2020-05-28T18:47:10Z) - A Skip-connected Multi-column Network for Isolated Handwritten Bangla
Character and Digit recognition [12.551285203114723]
We have proposed a non-explicit feature extraction method using a multi-scale multi-column skip convolutional neural network.
Our method is evaluated on four publicly available datasets of isolated handwritten Bangla characters and digits.
arXiv Detail & Related papers (2020-04-27T13:18:58Z) - A white-box analysis on the writer-independent dichotomy transformation
applied to offline handwritten signature verification [13.751795751395091]
A writer-independent (WI) framework is used to train a single model to perform signature verification for all writers.
In WI systems, a single model is trained to perform signature verification for all writers from a dissimilarity space generated by the dichotomy transformation.
We present a white-box analysis of this approach highlighting how it handles the challenges, the dynamic selection of references through fusion function, and its application for transfer learning.
arXiv Detail & Related papers (2020-04-03T19:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.