Transfer-Ensemble Learning based Deep Convolutional Neural Networks for
Diabetic Retinopathy Classification
- URL: http://arxiv.org/abs/2308.00525v1
- Date: Tue, 1 Aug 2023 13:07:39 GMT
- Title: Transfer-Ensemble Learning based Deep Convolutional Neural Networks for
Diabetic Retinopathy Classification
- Authors: Susmita Ghosh and Abhiroop Chatterjee
- Abstract summary: This article aims to classify diabetic retinopathy (DR) disease into five different classes using an ensemble approach based on two popular pre-trained convolutional neural networks: VGG16 and Inception V3.
Experimental results on the test set demonstrate the efficacy of the proposed ensemble model for DR classification achieving an accuracy of 96.4%.
- Score: 0.7614628596146599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article aims to classify diabetic retinopathy (DR) disease into five
different classes using an ensemble approach based on two popular pre-trained
convolutional neural networks: VGG16 and Inception V3. The proposed model aims
to leverage the strengths of the two individual nets to enhance the
classification performance for diabetic retinopathy. The ensemble model
architecture involves freezing a portion of the layers in each pre-trained
model to utilize their learned representations effectively. Global average
pooling layers are added to transform the output feature maps into fixed-length
vectors. These vectors are then concatenated to form a consolidated
representation of the input image. The ensemble model is trained using a
dataset of diabetic retinopathy images (APTOS), divided into training and
validation sets. During the training process, the model learns to classify the
retinal images into the corresponding diabetic retinopathy classes.
Experimental results on the test set demonstrate the efficacy of the proposed
ensemble model for DR classification achieving an accuracy of 96.4%.
Related papers
- Classification of Diabetic Retinopathy using Pre-Trained Deep Learning Models [0.0]
Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70.
This paper presents a Computer-Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR)
arXiv Detail & Related papers (2024-03-29T01:11:56Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - Deep Semi-Supervised and Self-Supervised Learning for Diabetic
Retinopathy Detection [0.0]
Diabetic retinopathy is one of the leading causes of blindness in the working-age population of developed countries.
Deep neural networks have been widely used in automated systems for DR classification on eye fundus images.
This paper presents a semi-supervised method that leverages unlabeled images and labeled ones to train a model that detects diabetic retinopathy.
arXiv Detail & Related papers (2022-08-04T02:28:13Z) - Stain based contrastive co-training for histopathological image analysis [61.87751502143719]
We propose a novel semi-supervised learning approach for classification of histovolution images.
We employ strong supervision with patch-level annotations combined with a novel co-training loss to create a semi-supervised learning framework.
We evaluate our approach in clear cell renal cell and prostate carcinomas, and demonstrate improvement over state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2022-06-24T22:25:31Z) - FEDI: Few-shot learning based on Earth Mover's Distance algorithm
combined with deep residual network to identify diabetic retinopathy [3.6623193507510012]
This paper proposes a few-shot learning model of a deep residual network based on Earth Mover's algorithm to assist in diagnosing diabetic retinopathy.
We build training and validation classification tasks for few-shot learning based on 39 categories of 1000 sample data, train deep residual networks, and obtain experience pre-training models.
Based on the weights of the pre-trained model, the Earth Mover's Distance algorithm calculates the distance between the images, obtains the similarity between the images, and changes the model's parameters to improve the accuracy of the training model.
arXiv Detail & Related papers (2021-08-22T13:05:02Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - DiaRet: A browser-based application for the grading of Diabetic
Retinopathy with Integrated Gradients [0.0]
Diabetes is a metabolic disorder that results from defects in autoimmune beta-cell destruction in Type 1, peripheral resistance to insulin action in Type 2 or, most commonly, both.
Patients with long-standing diabetes often fall prey to Diabetic Retinopathy resulting in changes in the retina of the human eye, which may lead to loss of vision in extreme cases.
The aim of this study is two-fold: (a) create deep learning models that were trained to grade degraded retinal fundus images and (b) to create a browser-based application that will aid in diagnostic procedures by highlighting the key features of the fundus image.
arXiv Detail & Related papers (2021-03-15T16:19:56Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.