VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification
- URL: http://arxiv.org/abs/2504.21464v1
- Date: Wed, 30 Apr 2025 09:38:47 GMT
- Title: VR-FuseNet: A Fusion of Heterogeneous Fundus Data and Explainable Deep Network for Diabetic Retinopathy Classification
- Authors: Shamim Rahim Refat, Ziyan Shirin Raha, Shuvashis Sarker, Faika Fairuj Preotee, MD. Musfikur Rahman, Tashreef Muhammad, Mohammad Shafiul Islam,
- Abstract summary: This paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet.<n>The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction.<n>The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic retinopathy is a severe eye condition caused by diabetes where the retinal blood vessels get damaged and can lead to vision loss and blindness if not treated. Early and accurate detection is key to intervention and stopping the disease progressing. For addressing this disease properly, this paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet. Diabetic retinopathy is a major eye disease and leading cause of blindness especially among diabetic patients so accurate and efficient automated detection methods are required. To address the limitations of existing methods including dataset imbalance, diversity and generalization issues this paper presents a hybrid dataset created from five publicly available diabetic retinopathy datasets. Essential preprocessing techniques such as SMOTE for class balancing and CLAHE for image enhancement are applied systematically to the dataset to improve the robustness and generalizability of the dataset. The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction. This fusion improves the diagnostic performance and achieves an accuracy of 91.824%. The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks. To make the proposed model more clinically useful and interpretable this paper incorporates multiple XAI techniques. These techniques generate visual explanations that clearly indicate the retinal features affecting the model's prediction such as microaneurysms, hemorrhages and exudates so that clinicians can interpret and validate.
Related papers
- Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis [44.38638601819933]
Current staging models for Diabetic Retinopathy (DR) are hardly interpretable.
We present a novel method that integrates graph representation learning with vision-language models (VLMs) to deliver explainable DR diagnosis.
arXiv Detail & Related papers (2025-03-12T20:19:07Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
Interpretability is crucial to enhance trust in machine learning models for medical diagnostics.<n>This work proposes a method that surpasses the performance of established machine learning models.
arXiv Detail & Related papers (2025-02-23T19:27:47Z) - Diabetic Retinopathy Detection Using CNN with Residual Block with DCGAN [0.0]
Diabetic Retinopathy (DR) is a major cause of blindness worldwide, caused by damage to the blood vessels in the retina due to diabetes.<n>This work proposes an automated system for DR detection using Convolutional Neural Networks (CNNs) with a residual block architecture.
arXiv Detail & Related papers (2025-01-04T14:48:28Z) - Domain Adaptive Diabetic Retinopathy Grading with Model Absence and Flowing Data [45.75724873443564]
Domain shift poses a significant challenge in clinical applications, e.g., Diabetic Retinopathy grading.<n>We propose a novel approach, Generative Unadversarial ExampleS (GUES), which enables adaptation from a data-centric perspective.
arXiv Detail & Related papers (2024-12-02T07:14:25Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
This research aims to improve diabetic retinopathy diagnosis by developing an enhanced deep learning model for timely DR identification.
The proposed model will detect various lesions from retinal images in the early stages.
arXiv Detail & Related papers (2023-05-08T14:17:33Z) - A Residual Encoder-Decoder Network for Segmentation of Retinal
Image-Based Exudates in Diabetic Retinopathy Screening [1.8496844821697171]
We present a convolutional neural network with residual skip connection for the segmentation of exudates in retinal images.
The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening.
arXiv Detail & Related papers (2022-01-16T04:08:17Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Diabetic Retinopathy Detection using Ensemble Machine Learning [1.2891210250935146]
Diabetic Retinopathy (DR) is among the worlds leading vision loss causes in diabetic patients.
DR is a microvascular disease that affects the eye retina, which causes vessel blockage and cuts the main source of nutrition for the retina tissues.
arXiv Detail & Related papers (2021-06-22T17:36:08Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading [9.181677987146418]
Diabetes is one of the most common disease in individuals.
Diabetic retinopathy (DR) is a complication of diabetes, which could lead to blindness.
DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning.
arXiv Detail & Related papers (2020-10-29T03:48:01Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.