論文の概要: Copula for Instance-wise Feature Selection and Ranking
- arxiv url: http://arxiv.org/abs/2308.00549v1
- Date: Tue, 1 Aug 2023 13:45:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-02 14:03:39.259774
- Title: Copula for Instance-wise Feature Selection and Ranking
- Title(参考訳): Copula for Instance-wise Feature Selection and Ranking
- Authors: Hanyu Peng, Guanhua Fang, Ping Li
- Abstract要約: 本稿では,変数間の相関を捉える強力な数学的手法であるガウスコプラを,現在の特徴選択フレームワークに組み込むことを提案する。
提案手法が有意な相関関係を捉えることができることを示すために, 合成データセットと実データセットの双方について, 性能比較と解釈可能性の観点から実験を行った。
- 参考スコア(独自算出の注目度): 24.09326839818306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instance-wise feature selection and ranking methods can achieve a good
selection of task-friendly features for each sample in the context of neural
networks. However, existing approaches that assume feature subsets to be
independent are imperfect when considering the dependency between features. To
address this limitation, we propose to incorporate the Gaussian copula, a
powerful mathematical technique for capturing correlations between variables,
into the current feature selection framework with no additional changes needed.
Experimental results on both synthetic and real datasets, in terms of
performance comparison and interpretability, demonstrate that our method is
capable of capturing meaningful correlations.
- Abstract(参考訳): インスタンス毎の機能選択とランキング手法は、ニューラルネットワークのコンテキストにおいて、各サンプルに対するタスクフレンドリな機能の適切な選択を可能にする。
しかし、機能サブセットが独立であると仮定する既存のアプローチは、機能間の依存性を考慮すると不完全である。
この制限に対処するため,変数間の相関を捉える強力な数学的手法であるガウスコプラを,追加の変更を伴わずに現在の特徴選択フレームワークに組み込むことを提案する。
性能比較と解釈性の観点から,合成データと実データの両方における実験結果から,本手法は有意義な相関を捉えることができることが示された。
関連論文リスト
- Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
本稿では,高密度マッチングタスク用に設計されたTransformerベースの積分機能とコスト集約ネットワークを提案する。
まず, 特徴集約とコスト集約が異なる特徴を示し, 双方の集約プロセスの司法的利用から生じる実質的な利益の可能性を明らかにした。
本フレームワークは意味マッチングのための標準ベンチマークで評価され,また幾何マッチングにも適用された。
論文 参考訳(メタデータ) (2024-03-17T07:02:55Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
対象値が入力集合とサブセットの両方に条件付けされている場合、スーパーセットのテクスティ不変な統計量を関心のサブセットに組み込むことが不可欠であることを示す。
これにより、出力値がサブセットとその対応するスーパーセットの置換に不変であることを保証する。
論文 参考訳(メタデータ) (2024-02-05T16:09:35Z) - Automated Model Selection for Tabular Data [0.1797555376258229]
Rの混合効果線形モデルライブラリは、モデル設計において対話的な機能の組み合わせを提供することができる。
特徴的相互作用を取り入れたデータセットの予測のためのモデル選択プロセスを自動化することを目的としている。
このフレームワークには、優先順位に基づくランダムグリッド検索とグレディ検索という、2つの異なる機能選択のアプローチが含まれている。
論文 参考訳(メタデータ) (2024-01-01T21:41:20Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
典型的な機械学習環境では、すべてのテストインスタンスの予測は、モデルトレーニング中に発見された機能の共通サブセットに基づいている。
それぞれのテストインスタンスに対して個別に評価する最適な特徴を順次選択し、分類精度に関して更なる改善が得られないことを判断すると、選択プロセスが終了して予測を行う新しい手法を提案する。
提案手法の有効性, 一般化性, 拡張性について, 多様なアプリケーション領域の様々な実世界のデータセットで説明する。
論文 参考訳(メタデータ) (2021-06-08T20:20:36Z) - On Feature Selection Using Anisotropic General Regression Neural Network [3.880707330499936]
入力データセットに無関係な特徴が存在することは、機械学習モデルの解釈可能性と予測品質を低下させる傾向がある。
本稿では, 一般回帰ニューラルネットワークと異方性ガウスカーネルを併用して特徴選択を行う方法を示す。
論文 参考訳(メタデータ) (2020-10-12T14:35:40Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。