論文の概要: Automated Model Selection for Tabular Data
- arxiv url: http://arxiv.org/abs/2401.00961v2
- Date: Wed, 29 May 2024 01:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 23:50:38.808276
- Title: Automated Model Selection for Tabular Data
- Title(参考訳): タブラルデータの自動モデル選択
- Authors: Avinash Amballa, Gayathri Akkinapalli, Manas Madine, Naga Pavana Priya Yarrabolu, Przemyslaw A. Grabowicz,
- Abstract要約: Rの混合効果線形モデルライブラリは、モデル設計において対話的な機能の組み合わせを提供することができる。
特徴的相互作用を取り入れたデータセットの予測のためのモデル選択プロセスを自動化することを目的としている。
このフレームワークには、優先順位に基づくランダムグリッド検索とグレディ検索という、2つの異なる機能選択のアプローチが含まれている。
- 参考スコア(独自算出の注目度): 0.1797555376258229
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Structured data in the form of tabular datasets contain features that are distinct and discrete, with varying individual and relative importances to the target. Combinations of one or more features may be more predictive and meaningful than simple individual feature contributions. R's mixed effect linear models library allows users to provide such interactive feature combinations in the model design. However, given many features and possible interactions to select from, model selection becomes an exponentially difficult task. We aim to automate the model selection process for predictions on tabular datasets incorporating feature interactions while keeping computational costs small. The framework includes two distinct approaches for feature selection: a Priority-based Random Grid Search and a Greedy Search method. The Priority-based approach efficiently explores feature combinations using prior probabilities to guide the search. The Greedy method builds the solution iteratively by adding or removing features based on their impact. Experiments on synthetic demonstrate the ability to effectively capture predictive feature combinations.
- Abstract(参考訳): 表形式のデータセットの形式で構造化されたデータには、異なる、離散的な特徴が含まれており、個々の重要度とターゲットに対する相対的重要性は様々である。
1つ以上の機能の組み合わせは、単純な個々の機能コントリビューションよりも予測的かつ有意義なものです。
Rの混合効果線形モデルライブラリは、モデル設計においてそのようなインタラクティブな機能の組み合わせを提供することができる。
しかし、多くの特徴とそこから選択できる相互作用を考えると、モデル選択は指数関数的に難しいタスクとなる。
計算コストを小さく保ちながら特徴的相互作用を取り入れた表型データセットの予測のためのモデル選択プロセスを自動化することを目的としている。
このフレームワークには、優先順位ベースのランダムグリッド検索とグレディ検索という、2つの異なる機能選択のアプローチが含まれている。
優先性に基づくアプローチでは、事前確率を用いて特徴組合せを効率的に探索し、探索を誘導する。
Greedyメソッドは、その影響に基づいて機能を追加したり削除したりすることで、反復的にソリューションを構築します。
合成実験は、予測的特徴の組み合わせを効果的に捉える能力を示す。
関連論文リスト
- Neuro-Symbolic Embedding for Short and Effective Feature Selection via Autoregressive Generation [22.87577374767465]
ニューロシンボリックレンズを用いて特徴選択を再構成し、短時間かつ効果的な特徴サブセットを特定することを目的とした新しい生成フレームワークを導入する。
本稿ではまず,特徴IDトークン,モデル性能,特徴サブセットの冗長度測定などからなる多数の特徴選択サンプルを自動的に収集するデータ収集手法を提案する。
収集したデータに基づいて,効率的な探索のために,特徴選択の知性を連続的な埋め込み空間に保存するエンコーダ・デコーダ・評価学習パラダイムを開発した。
論文 参考訳(メタデータ) (2024-04-26T05:01:08Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
本稿では,異なるクラス間で示される相違点に基づいて識別的特徴を抽出する新しいフィルタ特徴選択手法であるContrastFSを提案する。
提案手法の有効性と有効性について検証し,提案手法が無視可能な計算で良好に動作することを示す。
論文 参考訳(メタデータ) (2024-01-15T05:32:35Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
データサイエンティストは通常、データセットにできるだけ多くの機能を集め、既存の機能から新しい機能を設計する。
既存のタブ形式の特徴選択のためのベンチマークでは、古典的な下流モデル、おもちゃの合成データセット、あるいは下流のパフォーマンスに基づいて特徴セレクタを評価していない。
変換器を含む下流ニューラルネットワーク上で評価された課題のある特徴選択ベンチマークを構築した。
また,従来の特徴選択法よりも高い性能を有するニューラルネットワークのための,Lassoのインプット・グラディエント・ベース・アナログも提案する。
論文 参考訳(メタデータ) (2023-11-10T05:26:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Copula for Instance-wise Feature Selection and Ranking [24.09326839818306]
本稿では,変数間の相関を捉える強力な数学的手法であるガウスコプラを,現在の特徴選択フレームワークに組み込むことを提案する。
提案手法が有意な相関関係を捉えることができることを示すために, 合成データセットと実データセットの双方について, 性能比較と解釈可能性の観点から実験を行った。
論文 参考訳(メタデータ) (2023-08-01T13:45:04Z) - Composite Feature Selection using Deep Ensembles [130.72015919510605]
本研究では,事前定義されたグループ化を伴わない予測的特徴群発見の問題について検討する。
本稿では,特徴選択モデルのアンサンブルを用いて予測グループを探索する,新しいディープラーニングアーキテクチャを提案する。
発見群と基底真理の類似性を測定するための新しい尺度を提案する。
論文 参考訳(メタデータ) (2022-11-01T17:49:40Z) - Model-free feature selection to facilitate automatic discovery of
divergent subgroups in tabular data [4.551615447454768]
本稿では,分散サブグループの自動発見を容易にするために,モデルフリーかつスパーシティベース自動特徴選択(SAFS)フレームワークを提案する。
2つの公開データセット(MIMIC-IIIとAllstate Claims)でSAFSを検証し、既存の6つの特徴選択手法と比較した。
論文 参考訳(メタデータ) (2022-03-08T20:42:56Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
本稿では,共同適応グラフと構造付き空間正規化unsupervised feature selection (JASFS)法を提案する。
最適な機能のサブセットがグループで選択され、選択された機能の数が自動的に決定される。
8つのベンチマーク実験の結果,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2020-10-09T08:17:04Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。