論文の概要: Gradient Scaling on Deep Spiking Neural Networks with Spike-Dependent
Local Information
- arxiv url: http://arxiv.org/abs/2308.00558v1
- Date: Tue, 1 Aug 2023 13:58:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-08-02 13:52:28.171564
- Title: Gradient Scaling on Deep Spiking Neural Networks with Spike-Dependent
Local Information
- Title(参考訳): スパイク依存局所情報を用いたディープスパイクニューラルネットワークの勾配スケーリング
- Authors: Seongsik Park, Jeonghee Jo, Jongkil Park, Yeonjoo Jeong, Jaewook Kim,
Suyoun Lee, Joon Young Kwak, Inho Kim, Jong-Keuk Park, Kyeong Seok Lee, Gye
Weon Hwang, Hyun Jae Jang
- Abstract要約: 我々は、スパイキングバックプロパゲーション(STBP)と代理勾配を併用したディープニューラルネットワーク(SNN)を訓練する。
本研究では,時間前スパイクと時間後スパイクの関係である局所スパイク情報のスケーリングによる勾配について検討した。
スパイク間の因果関係を考えると、深層SNNの訓練を強化することができる。
- 参考スコア(独自算出の注目度): 2.111711135667053
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep spiking neural networks (SNNs) are promising neural networks for their
model capacity from deep neural network architecture and energy efficiency from
SNNs' operations. To train deep SNNs, recently, spatio-temporal backpropagation
(STBP) with surrogate gradient was proposed. Although deep SNNs have been
successfully trained with STBP, they cannot fully utilize spike information. In
this work, we proposed gradient scaling with local spike information, which is
the relation between pre- and post-synaptic spikes. Considering the causality
between spikes, we could enhance the training performance of deep SNNs.
According to our experiments, we could achieve higher accuracy with lower
spikes by adopting the gradient scaling on image classification tasks, such as
CIFAR10 and CIFAR100.
- Abstract(参考訳): deep spiking neural networks (snns)は、ディープニューラルネットワークアーキテクチャからモデルキャパシティ、snsの運用からエネルギー効率まで、ニューラルネットワークを約束している。
近年,深部SNNを訓練するために,代理勾配を有する時空間バックプロパゲーション(STBP)が提案されている。
深部SNNはSTBPで訓練されているが、スパイク情報を完全に活用することはできない。
本研究では,前スパイクと後スパイクの関係である局所スパイク情報を用いた勾配スケーリングを提案する。
スパイク間の因果性を考慮すると、深層SNNのトレーニング性能を向上させることができる。
実験の結果,CIFAR10やCIFAR100などの画像分類タスクに勾配スケーリングを適用することで,より精度の高いスパイクを実現することができた。
関連論文リスト
- LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks [19.490903216456758]
スパイキングニューラルネットワーク(SNN)は、非同期離散性とスパース特性を持つニューラルネットワークである。
既存のスパイキング抑制残差ネットワーク(Spiking DS-ResNet)に基づくマルチレベル焼成(MLF)手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T16:39:46Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding [26.654533157221973]
本稿では,カーネルベースの動的しきい値とデンドライトを用いて,深層SNNにタイム・ツー・ファースト・スパイク・コーディングを組み込むことによって,その欠点を克服する手法を提案する。
提案手法は,バースト符号化法と比較して,推定遅延とスパイク回数を22%,1%以下に削減できる。
論文 参考訳(メタデータ) (2020-03-26T04:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。