Learning from Hypervectors: A Survey on Hypervector Encoding
- URL: http://arxiv.org/abs/2308.00685v1
- Date: Tue, 1 Aug 2023 17:42:35 GMT
- Title: Learning from Hypervectors: A Survey on Hypervector Encoding
- Authors: Sercan Aygun, Mehran Shoushtari Moghadam, M. Hassan Najafi, Mohsen
Imani
- Abstract summary: Hyperdimensional computing (HDC) is an emerging computing paradigm that imitates the brain's structure to offer a powerful and efficient processing and learning model.
In HDC, the data are encoded with long vectors, called hypervectors, typically with a length of 1K to 10K.
- Score: 9.46717806608802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperdimensional computing (HDC) is an emerging computing paradigm that
imitates the brain's structure to offer a powerful and efficient processing and
learning model. In HDC, the data are encoded with long vectors, called
hypervectors, typically with a length of 1K to 10K. The literature provides
several encoding techniques to generate orthogonal or correlated hypervectors,
depending on the intended application. The existing surveys in the literature
often focus on the overall aspects of HDC systems, including system inputs,
primary computations, and final outputs. However, this study takes a more
specific approach. It zeroes in on the HDC system input and the generation of
hypervectors, directly influencing the hypervector encoding process. This
survey brings together various methods for hypervector generation from
different studies and explores the limitations, challenges, and potential
benefits they entail. Through a comprehensive exploration of this survey,
readers will acquire a profound understanding of various encoding types in HDC
and gain insights into the intricate process of hypervector generation for
diverse applications.
Related papers
- Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware Detection [50.7263393517558]
We introduce Holographic Global Convolutional Networks (HGConv) that utilize the properties of Holographic Reduced Representations (HRR)
Unlike other global convolutional methods, our method does not require any intricate kernel computation or crafted kernel design.
The proposed method has achieved new SOTA results on Microsoft Malware Classification Challenge, Drebin, and EMBER malware benchmarks.
arXiv Detail & Related papers (2024-03-23T15:49:13Z) - HyperVQ: MLR-based Vector Quantization in Hyperbolic Space [56.4245885674567]
We study the use of hyperbolic spaces for vector quantization (HyperVQ)
We show that hyperVQ performs comparably in reconstruction and generative tasks while outperforming VQ in discriminative tasks and learning a highly disentangled latent space.
arXiv Detail & Related papers (2024-03-18T03:17:08Z) - An Encoding Framework for Binarized Images using HyperDimensional
Computing [0.0]
This article proposes a novel light-weight approach to encode binarized images that preserves similarity of patterns at nearby locations.
The method reaches an accuracy of 97.35% on the test set for the MNIST data set and 84.12% for the Fashion-MNIST data set.
arXiv Detail & Related papers (2023-12-01T09:34:28Z) - Sobol Sequence Optimization for Hardware-Efficient Vector Symbolic
Architectures [2.022279594514036]
Hyperdimensional computing (HDC) is an emerging computing paradigm with significant promise for efficient and robust learning.
objects are encoded with high-dimensional vector symbolic sequences called hypervectors.
The quality of hypervectors, defined by their distribution and independence, directly impacts the performance of HDC systems.
arXiv Detail & Related papers (2023-11-17T01:48:07Z) - uHD: Unary Processing for Lightweight and Dynamic Hyperdimensional
Computing [1.7118124088316602]
Hyperdimensional computing (HDC) is a novel computational paradigm that operates on long-dimensional vectors known as hypervectors.
In this paper, we show how to generate intensity and position hypervectors in HDC using low-discrepancy sequences.
For the first time in the literature, our proposed approach employs lightweight vector generators utilizing unary bit-streams for efficient encoding of data.
arXiv Detail & Related papers (2023-11-16T06:28:19Z) - Online Clustered Codebook [100.1650001618827]
We present a simple alternative method for online codebook learning, Clustering VQ-VAE (CVQ-VAE)
Our approach selects encoded features as anchors to update the dead'' codevectors, while optimising the codebooks which are alive via the original loss.
Our CVQ-VAE can be easily integrated into the existing models with just a few lines of code.
arXiv Detail & Related papers (2023-07-27T18:31:04Z) - HDCC: A Hyperdimensional Computing compiler for classification on
embedded systems and high-performance computing [58.720142291102135]
This work introduces the name compiler, the first open-source compiler that translates high-level descriptions of HDC classification methods into optimized C code.
name is designed like a modern compiler, featuring an intuitive and descriptive input language, an intermediate representation (IR), and a retargetable backend.
To substantiate these claims, we conducted experiments with HDCC on several of the most popular datasets in the HDC literature.
arXiv Detail & Related papers (2023-04-24T19:16:03Z) - Streaming Encoding Algorithms for Scalable Hyperdimensional Computing [12.829102171258882]
Hyperdimensional computing (HDC) is a paradigm for data representation and learning originating in computational neuroscience.
In this work, we explore a family of streaming encoding techniques based on hashing.
We show formally that these methods enjoy comparable guarantees on performance for learning applications while being substantially more efficient than existing alternatives.
arXiv Detail & Related papers (2022-09-20T17:25:14Z) - An Extension to Basis-Hypervectors for Learning from Circular Data in
Hyperdimensional Computing [62.997667081978825]
Hyperdimensional Computing (HDC) is a computation framework based on properties of high-dimensional random spaces.
We present a study on basis-hypervector sets, which leads to practical contributions to HDC in general.
We introduce a method to learn from circular data, an important type of information never before addressed in machine learning with HDC.
arXiv Detail & Related papers (2022-05-16T18:04:55Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - SHEARer: Highly-Efficient Hyperdimensional Computing by
Software-Hardware Enabled Multifold Approximation [7.528764144503429]
We propose SHEARer, an algorithm-hardware co-optimization to improve the performance and energy consumption of HD computing.
SHEARer achieves an average throughput boost of 104,904x (15.7x) and energy savings of up to 56,044x (301x) compared to state-of-the-art encoding methods.
We also develop a software framework that enables training HD models by emulating the proposed approximate encodings.
arXiv Detail & Related papers (2020-07-20T07:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.