Automated COVID-19 CT Image Classification using Multi-head Channel
Attention in Deep CNN
- URL: http://arxiv.org/abs/2308.00715v2
- Date: Sat, 12 Aug 2023 17:50:45 GMT
- Title: Automated COVID-19 CT Image Classification using Multi-head Channel
Attention in Deep CNN
- Authors: Susmita Ghosh and Abhiroop Chatterjee
- Abstract summary: We present a novel deep learning approach for automated COVID-19 CT scan classification.
A modified Xception model is proposed which incorporates a newly designed channel attention mechanism and weighted global average pooling.
Experiments on a widely used COVID-19 CT scan dataset demonstrate a very good accuracy of 96.99% and show its superiority to other state-of-the-art techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid spread of COVID-19 has necessitated efficient and accurate
diagnostic methods. Computed Tomography (CT) scan images have emerged as a
valuable tool for detecting the disease. In this article, we present a novel
deep learning approach for automated COVID-19 CT scan classification where a
modified Xception model is proposed which incorporates a newly designed channel
attention mechanism and weighted global average pooling to enhance feature
extraction thereby improving classification accuracy. The channel attention
module selectively focuses on informative regions within each channel, enabling
the model to learn discriminative features for COVID-19 detection. Experiments
on a widely used COVID-19 CT scan dataset demonstrate a very good accuracy of
96.99% and show its superiority to other state-of-the-art techniques. This
research can contribute to the ongoing efforts in using artificial intelligence
to combat current and future pandemics and can offer promising and timely
solutions for efficient medical image analysis tasks.
Related papers
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Multi-Feature Vision Transformer via Self-Supervised Representation
Learning for Improvement of COVID-19 Diagnosis [2.3513645401551333]
We study the effectiveness of self-supervised learning in the context of diagnosing COVID-19 disease from CXR images.
We deploy a cross-attention mechanism to learn information from both original CXR images and corresponding enhanced local phase CXR images.
We demonstrate the performance of the baseline self-supervised learning models can be further improved by leveraging the local phase-based enhanced CXR images.
arXiv Detail & Related papers (2022-08-03T05:02:47Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Diagnosing COVID-19 Pneumonia from X-Ray and CT Images using Deep
Learning and Transfer Learning Algorithms [8.697183191483571]
COVID-19 (also known as 2019 Novel Coronavirus) first emerged in Wuhan, China and spread across the globe with unprecedented effect.
This study aims to build a comprehensive dataset of X-rays and CT scan images from multiple sources.
In this vein, a simple convolution neural network (CNN) and modified pre-trained AlexNet model are applied on the prepared X-rays and CT scan images dataset.
arXiv Detail & Related papers (2020-03-31T18:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.