論文の概要: Beam Detection Based on Machine Learning Algorithms
- arxiv url: http://arxiv.org/abs/2308.00718v1
- Date: Tue, 1 Aug 2023 02:25:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 15:09:49.683910
- Title: Beam Detection Based on Machine Learning Algorithms
- Title(参考訳): 機械学習アルゴリズムを用いたビーム検出
- Authors: Haoyuan Li and Qing Yin
- Abstract要約: スクリーン上の自由電子レーザービームの位置は、機械学習モデルのシーケンスによって決定される。
このシーケンスでは、テストデータ上で85.8%の正確な予測が達成される。
- 参考スコア(独自算出の注目度): 3.8097316404847756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The positions of free electron laser beams on screens are precisely
determined by a sequence of machine learning models. Transfer training is
conducted in a self-constructed convolutional neural network based on VGG16
model. Output of intermediate layers are passed as features to a support vector
regression model. With this sequence, 85.8% correct prediction is achieved on
test data.
- Abstract(参考訳): スクリーン上の自由電子レーザービームの位置は、機械学習モデルのシーケンスによって決定される。
転送トレーニングは、VGG16モデルに基づく自己構築畳み込みニューラルネットワークで行われる。
中間層の出力は、サポートベクトル回帰モデルに特徴として渡される。
このシーケンスでは、テストデータで85.8%の正確な予測が達成される。
関連論文リスト
- Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
新しいタイプのニューラルネットワークは、高速ニューラルネットワークパラダイムを用いて提示される。
提案したエミュレータを組み込んだニューラルネットワークは,予測精度を損なうことなく,ほぼ瞬時に学習できることが判明した。
論文 参考訳(メタデータ) (2023-09-12T22:34:34Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
モデルの訓練が完了すると抽出できる精度行列のスペクトルに含まれる貴重な情報を示す。
回帰,分類,特徴選択タスクの数値実験を行った。
その結果,提案モデルが競合モデルに比べて魅力的な予測性能が得られるだけでなく,予測性能も向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-11T09:54:30Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
我々は、高度LIGO検出器のデータから過渡ノイズ信号(グリッチ)と重力波を分類する。
どちらも、Gravity Spyデータセットを使用して、スクラッチからトレーニングされた、教師付き学習アプローチのモデルを使用します。
また、擬似ラベルの自動生成による事前学習モデルの自己教師型アプローチについても検討する。
論文 参考訳(メタデータ) (2023-03-24T11:12:37Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Memory-Efficient Backpropagation through Large Linear Layers [107.20037639738433]
Transformersのような現代のニューラルネットワークでは、線形層は後方通過時にアクティベーションを保持するために大きなメモリを必要とする。
本研究では,線形層によるバックプロパゲーションを実現するためのメモリ削減手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T13:02:41Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Linearly Constrained Neural Networks [0.5735035463793007]
ニューラルネットワークを用いた物理システムからベクトル場をモデリングおよび学習するための新しいアプローチを提案する。
これを実現するために、ターゲット関数は、ニューラルネットワークによってモデル化される下位のポテンシャル場の線形変換としてモデル化される。
論文 参考訳(メタデータ) (2020-02-05T01:27:29Z) - A Multi-Scale Tensor Network Architecture for Classification and
Regression [0.0]
テンソルネットワークを用いた教師あり学習のためのアルゴリズムを提案する。
我々はウェーブレット変換の連続を通して粗粒化によってデータを前処理するステップを採用する。
ネットワークを通しての細粒化がモデルの初期化にどのように利用されるかを示す。
論文 参考訳(メタデータ) (2020-01-22T21:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。