WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond
- URL: http://arxiv.org/abs/2308.00931v1
- Date: Wed, 2 Aug 2023 04:17:35 GMT
- Title: WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond
- Authors: Zengxi Zhang, Zhiying Jiang, Jinyuan Liu, Xin Fan, Risheng Liu
- Abstract summary: Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice.
We propose a normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow.
Considering the differentiability and interpretability, we incorporate the prior into the data-driven mapping procedure.
- Score: 52.27796682972484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater images suffer from light refraction and absorption, which impairs
visibility and interferes the subsequent applications. Existing underwater
image enhancement methods mainly focus on image quality improvement, ignoring
the effect on practice. To balance the visual quality and application, we
propose a heuristic normalizing flow for detection-driven underwater image
enhancement, dubbed WaterFlow. Specifically, we first develop an invertible
mapping to achieve the translation between the degraded image and its clear
counterpart. Considering the differentiability and interpretability, we
incorporate the heuristic prior into the data-driven mapping procedure, where
the ambient light and medium transmission coefficient benefit credible
generation. Furthermore, we introduce a detection perception module to transmit
the implicit semantic guidance into the enhancement procedure, where the
enhanced images hold more detection-favorable features and are able to promote
the detection performance. Extensive experiments prove the superiority of our
WaterFlow, against state-of-the-art methods quantitatively and qualitatively.
Related papers
- Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks.
We propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks.
Experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T06:52:05Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Unpaired Overwater Image Defogging Using Prior Map Guided CycleGAN [60.257791714663725]
We propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes.
The proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
arXiv Detail & Related papers (2022-12-23T03:00:28Z) - UIF: An Objective Quality Assessment for Underwater Image Enhancement [17.145844358253164]
We propose an Underwater Image Fidelity (UIF) metric for objective evaluation of enhanced underwater images.
By exploiting the statistical features of these images, we present to extract naturalness-related, sharpness-related, and structure-related features.
Experimental results confirm that the proposed UIF outperforms a variety of underwater and general-purpose image quality metrics.
arXiv Detail & Related papers (2022-05-19T08:43:47Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
This paper shows that attributing the right receptive field size (context) based on the traversing range of the color channel may lead to a substantial performance gain.
As a second novelty, we have incorporated an attentive skip mechanism to adaptively refine the learned multi-contextual features.
The proposed framework, called Deep WaveNet, is optimized using the traditional pixel-wise and feature-based cost functions.
arXiv Detail & Related papers (2021-06-15T06:47:51Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
We propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor.
Due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data.
Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.
arXiv Detail & Related papers (2020-08-21T22:11:34Z) - Underwater image enhancement with Image Colorfulness Measure [7.292965806774365]
We propose a novel enhancement model, which is a trainable end-to-end neural model.
For better details, contrast and colorfulness, this enhancement network is jointly optimized by the pixel-level and characteristiclevel training criteria.
arXiv Detail & Related papers (2020-04-18T12:44:57Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.