HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning
- URL: http://arxiv.org/abs/2411.18296v2
- Date: Fri, 29 Nov 2024 12:26:46 GMT
- Title: HUPE: Heuristic Underwater Perceptual Enhancement with Semantic Collaborative Learning
- Authors: Zengxi Zhang, Zhiying Jiang, Long Ma, Jinyuan Liu, Xin Fan, Risheng Liu,
- Abstract summary: Existing underwater image enhancement methods primarily focus on improving visual quality while overlooking practical implications.
We propose a invertible network for underwater perception enhancement, dubbed H, which enhances visual quality and demonstrates flexibility in handling other downstream tasks.
- Score: 62.264673293638175
- License:
- Abstract: Underwater images are often affected by light refraction and absorption, reducing visibility and interfering with subsequent applications. Existing underwater image enhancement methods primarily focus on improving visual quality while overlooking practical implications. To strike a balance between visual quality and application, we propose a heuristic invertible network for underwater perception enhancement, dubbed HUPE, which enhances visual quality and demonstrates flexibility in handling other downstream tasks. Specifically, we introduced an information-preserving reversible transformation with embedded Fourier transform to establish a bidirectional mapping between underwater images and their clear images. Additionally, a heuristic prior is incorporated into the enhancement process to better capture scene information. To further bridge the feature gap between vision-based enhancement images and application-oriented images, a semantic collaborative learning module is applied in the joint optimization process of the visual enhancement task and the downstream task, which guides the proposed enhancement model to extract more task-oriented semantic features while obtaining visually pleasing images. Extensive experiments, both quantitative and qualitative, demonstrate the superiority of our HUPE over state-of-the-art methods. The source code is available at https://github.com/ZengxiZhang/HUPE.
Related papers
- Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations [6.113035634680655]
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images.
We introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component.
arXiv Detail & Related papers (2024-07-17T11:51:52Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - WaterFlow: Heuristic Normalizing Flow for Underwater Image Enhancement
and Beyond [52.27796682972484]
Existing underwater image enhancement methods mainly focus on image quality improvement, ignoring the effect on practice.
We propose a normalizing flow for detection-driven underwater image enhancement, dubbed WaterFlow.
Considering the differentiability and interpretability, we incorporate the prior into the data-driven mapping procedure.
arXiv Detail & Related papers (2023-08-02T04:17:35Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
Underwater image enhancement has become an attractive topic as a significant technology in marine engineering and aquatic robotics.
We develop an efficient and compact enhancement network in collaboration with a high-level semantic-aware pretrained model.
We also apply the proposed algorithm to the underwater salient object detection task to reveal the favorable semantic-aware ability for high-level vision tasks.
arXiv Detail & Related papers (2022-11-19T07:50:34Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
This paper shows that attributing the right receptive field size (context) based on the traversing range of the color channel may lead to a substantial performance gain.
As a second novelty, we have incorporated an attentive skip mechanism to adaptively refine the learned multi-contextual features.
The proposed framework, called Deep WaveNet, is optimized using the traditional pixel-wise and feature-based cost functions.
arXiv Detail & Related papers (2021-06-15T06:47:51Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
We propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor.
Due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data.
Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.
arXiv Detail & Related papers (2020-08-21T22:11:34Z) - Towards Modality Transferable Visual Information Representation with
Optimal Model Compression [67.89885998586995]
We propose a new scheme for visual signal representation that leverages the philosophy of transferable modality.
The proposed framework is implemented on the state-of-the-art video coding standard.
arXiv Detail & Related papers (2020-08-13T01:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.