論文の概要: Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives
- arxiv url: http://arxiv.org/abs/2308.01139v1
- Date: Wed, 2 Aug 2023 13:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 12:49:58.071362
- Title: Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives
- Title(参考訳): 複合目的をもつ局所的微分的連合学習のための動的プライバシー割当
- Authors: Jiaojiao Zhang, Dominik Fay, and Mikael Johansson
- Abstract要約: 本稿では,強い凸性を持つが非滑らかな問題に対する差分プライベートなフェデレーション学習アルゴリズムを提案する。
提案アルゴリズムは、共有情報に人工ノイズを加えてプライバシーを確保するとともに、時間変化のノイズ分散を動的に割り当て、最適化誤差の上限を最小化する。
解析結果から,提案手法が最先端手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 10.528569272279999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a locally differentially private federated learning
algorithm for strongly convex but possibly nonsmooth problems that protects the
gradients of each worker against an honest but curious server. The proposed
algorithm adds artificial noise to the shared information to ensure privacy and
dynamically allocates the time-varying noise variance to minimize an upper
bound of the optimization error subject to a predefined privacy budget
constraint. This allows for an arbitrarily large but finite number of
iterations to achieve both privacy protection and utility up to a neighborhood
of the optimal solution, removing the need for tuning the number of iterations.
Numerical results show the superiority of the proposed algorithm over
state-of-the-art methods.
- Abstract(参考訳): 本稿では,各作業者の勾配を誠実だが好ましくないサーバから保護する,強い凸性を持つがおそらく非滑らかな問題に対する局所的に微分プライベートなフェデレーション学習アルゴリズムを提案する。
提案手法は,プライバシを確保するために共有情報に人工ノイズを付加し,事前定義されたプライバシ予算制約の対象となる最適化誤差の上限を最小化するために,時間変動ノイズ分散を動的に割り当てる。
これにより、任意に大きいが有限個のイテレーションが、最適なソリューションの近傍までプライバシー保護とユーティリティの両方を達成することができ、イテレーション数をチューニングする必要がなくなる。
解析結果から,提案手法が最先端手法よりも優れていることを示す。
関連論文リスト
- Private Networked Federated Learning for Nonsmooth Objectives [7.278228169713637]
本稿では,非平滑な目的関数を解くためのネットワーク型フェデレーション学習アルゴリズムを提案する。
参加者の秘密性を保証するため、ゼロ集中型微分プライバシー概念(zCDP)を用いる。
プライバシ保証とアルゴリズムの正確な解への収束の完全な理論的証明を提供する。
論文 参考訳(メタデータ) (2023-06-24T16:13:28Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
これらの設定の聖杯は、プライバシーと過剰な人口減少の間の最適なトレードオフを保証することです。
微分プライベート・ミニマックス最適化(DP-SMO)問題を解くための一般的なフレームワークを提供する。
我々のフレームワークは、非滑らかな微分プライベート凸最適化(DP-SCO)のための最近提案されたフェイズド・ERM法[20]から着想を得たものである。
論文 参考訳(メタデータ) (2022-06-01T10:03:20Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
プライバシー保護統計のレンズによるガウス過程(GP)帯域最適化の至るところでの問題点を考察する。
均一なカーネル近似器とランダムな摂動を組み合わせた差分プライベートGPバンディット最適化のためのソリューションを提案する。
我々のアルゴリズムは最適化手順を通して微分プライバシを保持し、予測のためのサンプルパスに明示的に依存しない。
論文 参考訳(メタデータ) (2021-02-24T18:52:24Z) - Learning with User-Level Privacy [61.62978104304273]
ユーザレベルの差分プライバシー制約下での学習課題を,アルゴリズムを用いて解析する。
個々のサンプルのプライバシーのみを保証するのではなく、ユーザレベルのdpはユーザの貢献全体を保護します。
プライバシコストが$tau$に比例した$K$適応的に選択されたクエリのシーケンスにプライベートに答えるアルゴリズムを導き出し、私たちが検討する学習タスクを解決するためにそれを適用します。
論文 参考訳(メタデータ) (2021-02-23T18:25:13Z) - Stochastic Adaptive Line Search for Differentially Private Optimization [6.281099620056346]
プライベート勾配に基づく最適化アルゴリズムの性能は、選択ステップサイズ(または学習率)に大きく依存する。
ノイズ勾配の信頼性に応じて、プライバシー勾配を調整する古典的非自明な行探索アルゴリズムを提案する。
適応的に選択されたステップサイズにより、提案アルゴリズムは、プライバシ予算を効率的に利用し、既存のプライベートグラデーションと競合する性能を示すことができる。
論文 参考訳(メタデータ) (2020-08-18T15:18:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。