論文の概要: No-Regret Algorithms for Private Gaussian Process Bandit Optimization
- arxiv url: http://arxiv.org/abs/2102.12467v1
- Date: Wed, 24 Feb 2021 18:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-25 13:36:31.276523
- Title: No-Regret Algorithms for Private Gaussian Process Bandit Optimization
- Title(参考訳): プライベートガウスプロセス帯域最適化のためのノンレグレレットアルゴリズム
- Authors: Abhimanyu Dubey
- Abstract要約: プライバシー保護統計のレンズによるガウス過程(GP)帯域最適化の至るところでの問題点を考察する。
均一なカーネル近似器とランダムな摂動を組み合わせた差分プライベートGPバンディット最適化のためのソリューションを提案する。
我々のアルゴリズムは最適化手順を通して微分プライバシを保持し、予測のためのサンプルパスに明示的に依存しない。
- 参考スコア(独自算出の注目度): 13.660643701487002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread proliferation of data-driven decision-making has ushered in a
recent interest in the design of privacy-preserving algorithms. In this paper,
we consider the ubiquitous problem of gaussian process (GP) bandit optimization
from the lens of privacy-preserving statistics. We propose a solution for
differentially private GP bandit optimization that combines a uniform kernel
approximator with random perturbations, providing a generic framework to create
differentially-private (DP) Gaussian process bandit algorithms. For two
specific DP settings - joint and local differential privacy, we provide
algorithms based on efficient quadrature Fourier feature approximators, that
are computationally efficient and provably no-regret for popular stationary
kernel functions. Our algorithms maintain differential privacy throughout the
optimization procedure and critically do not rely explicitly on the sample path
for prediction, making the parameters straightforward to release as well.
- Abstract(参考訳): データ駆動意思決定の広範な普及により、プライバシー保護アルゴリズムの設計に対する最近の関心が高まりました。
本稿では,プライバシー保護統計のレンズからのガウス過程(GP)の広帯域最適化のユビキタスな問題を検討する。
本稿では,一様カーネル近似器とランダムな摂動を組み合わせた微分プライベートGPバンディット最適化法を提案し,微分プライベート(DP)ガウスプロセスバンディットアルゴリズムを作成するための汎用フレームワークを提供する。
2つの特定のDP設定 - 結合と局所微分プライバシー - に対して、計算効率が良く、一般的な定常カーネル関数には不可避な、効率的な二次フーリエ特徴近似器に基づくアルゴリズムを提供する。
当社のアルゴリズムは、最適化手順を通じて差分プライバシーを維持し、予測のためのサンプルパスに明示的に依存せず、パラメータも簡単にリリースできます。
関連論文リスト
- Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization [55.81991984375959]
本研究では、以下の簡単な観察を通して、個別化されたプライバシ会計を解析する新しい手法を提案する。
我々は、分解可能な部分モジュラーおよびセットアルゴリズム被覆を含む、プライベート最適化問題に対するいくつかの改良されたアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-05-28T19:02:30Z) - Random Exploration in Bayesian Optimization: Order-Optimal Regret and
Computational Efficiency [18.17090625880964]
本研究では,分布から引き出されたランダムサンプルを用いて領域を探索する手法について検討する。
このランダム探索手法が最適誤差率を達成することを示す。
論文 参考訳(メタデータ) (2023-10-23T20:30:44Z) - Dynamic Privacy Allocation for Locally Differentially Private Federated
Learning with Composite Objectives [10.528569272279999]
本稿では,強い凸性を持つが非滑らかな問題に対する差分プライベートなフェデレーション学習アルゴリズムを提案する。
提案アルゴリズムは、共有情報に人工ノイズを加えてプライバシーを確保するとともに、時間変化のノイズ分散を動的に割り当て、最適化誤差の上限を最小化する。
解析結果から,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-02T13:30:33Z) - Private Networked Federated Learning for Nonsmooth Objectives [7.278228169713637]
本稿では,非平滑な目的関数を解くためのネットワーク型フェデレーション学習アルゴリズムを提案する。
参加者の秘密性を保証するため、ゼロ集中型微分プライバシー概念(zCDP)を用いる。
プライバシ保証とアルゴリズムの正確な解への収束の完全な理論的証明を提供する。
論文 参考訳(メタデータ) (2023-06-24T16:13:28Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Optimal Algorithms for Mean Estimation under Local Differential Privacy [55.32262879188817]
そこで本研究では,PrivUnitが局所的プライベートな乱数化器群間の最適分散を実現することを示す。
また,ガウス分布に基づくPrivUnitの新たな変種も開発しており,数学的解析に適しており,同じ最適性保証を享受できる。
論文 参考訳(メタデータ) (2022-05-05T06:43:46Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Local Differential Privacy for Bayesian Optimization [12.05395706770007]
局所微分プライバシー(LDP)を保証した非パラメトリックガウス過程におけるブラックボックス最適化について検討する。
具体的には、各ユーザの報酬は、プライバシーを保護するためにさらに悪化し、学習者は、後悔を最小限に抑えるために、破損した報酬にのみアクセスすることができる。
GP-UCBフレームワークとLaplace DP機構に基づく3つのほぼ最適なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-13T21:50:09Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。