論文の概要: Unleash the Power of Context: Enhancing Large-Scale Recommender Systems
with Context-Based Prediction Models
- arxiv url: http://arxiv.org/abs/2308.01231v1
- Date: Tue, 25 Jul 2023 07:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-06 10:53:29.898892
- Title: Unleash the Power of Context: Enhancing Large-Scale Recommender Systems
with Context-Based Prediction Models
- Title(参考訳): コンテキストのパワーを解き放つ:コンテキストに基づく予測モデルによる大規模レコメンデーションシステムの拡張
- Authors: Jan Hartman, Assaf Klein, Davorin Kopi\v{c}, Natalia Silberstein
- Abstract要約: コンテキストベース予測モデルは、ユーザの行動の確率を、ユーザとコンテキストの特徴にのみ依存することによって決定する。
我々は、クリック確率を推定するために補助的なコンテキストベースモデルを訓練することを含む、このモデリングアプローチのための多くの貴重な応用を特定した。
- 参考スコア(独自算出の注目度): 2.3267858167388775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce the notion of Context-Based Prediction Models. A
Context-Based Prediction Model determines the probability of a user's action
(such as a click or a conversion) solely by relying on user and contextual
features, without considering any specific features of the item itself. We have
identified numerous valuable applications for this modeling approach, including
training an auxiliary context-based model to estimate click probability and
incorporating its prediction as a feature in CTR prediction models. Our
experiments indicate that this enhancement brings significant improvements in
offline and online business metrics while having minimal impact on the cost of
serving. Overall, our work offers a simple and scalable, yet powerful approach
for enhancing the performance of large-scale commercial recommender systems,
with broad implications for the field of personalized recommendations.
- Abstract(参考訳): 本稿では,文脈に基づく予測モデルの概念を紹介する。
コンテキストベースの予測モデルは、アイテム自体の特定の特徴を考慮せずに、ユーザとコンテキストの機能のみに依存することによって、ユーザのアクション(クリックや変換など)の確率を決定する。
我々は,クリック確率を推定するための補助的コンテキストベースモデルのトレーニングや,ctr予測モデルの特徴としてその予測を組み込むなど,このモデリング手法に多くの有用な応用方法を見出した。
この強化は、オフラインとオンラインのビジネスメトリクスを大幅に改善すると同時に、サービスコストに最小限の影響を与えます。
全体として、私たちの研究は、大規模商用レコメンデーションシステムのパフォーマンスを向上させるための、シンプルでスケーラブルで強力なアプローチを提供しています。
関連論文リスト
- Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - Customer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout [3.187236205541292]
本稿では,モンテカルロ・ドロップアウト(MCD)フレームワークを組み込むことにより,純粋ニューラルネットワークモデルのアーキテクチャを強化する新しいアプローチを提案する。
世界で最もダウンロード数の多いモバイルゲームのデータを用いて,提案手法のベンチマークを行った。
提案手法は,ニューラルネットワークモデル間での性能評価を行うための余分な次元として信頼性指標を提供する。
論文 参考訳(メタデータ) (2024-11-24T18:14:44Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - A Utility-Mining-Driven Active Learning Approach for Analyzing Clickstream Sequences [21.38368444137596]
本研究では、SHAP値(HUSPM-SHAP)モデルを用いた高ユーティリティシーケンスパターンマイニングを提案する。
本研究は,電子商取引データ処理を改良し,より合理化され,コスト効率のよい予測モデルに向けたモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-10-09T10:44:02Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Prototypical Fine-tuning: Towards Robust Performance Under Varying Data
Sizes [47.880781811936345]
我々は、微調整事前学習言語モデル(LM)のための新しいフレームワークを提案する。
提案手法は,データポイント数やモデル固有の属性に応じて,モデルキャパシティを自動的に調整することができる。
論文 参考訳(メタデータ) (2022-11-24T14:38:08Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。