Deep learning for unsupervised domain adaptation in medical imaging:
Recent advancements and future perspectives
- URL: http://arxiv.org/abs/2308.01265v1
- Date: Tue, 18 Jul 2023 08:24:41 GMT
- Title: Deep learning for unsupervised domain adaptation in medical imaging:
Recent advancements and future perspectives
- Authors: Suruchi Kumari, Pravendra Singh
- Abstract summary: We provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective.
We categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform.
- Score: 13.160616423673375
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning has demonstrated remarkable performance across various tasks in
medical imaging. However, these approaches primarily focus on supervised
learning, assuming that the training and testing data are drawn from the same
distribution. Unfortunately, this assumption may not always hold true in
practice. To address these issues, unsupervised domain adaptation (UDA)
techniques have been developed to transfer knowledge from a labeled domain to a
related but unlabeled domain. In recent years, significant advancements have
been made in UDA, resulting in a wide range of methodologies, including feature
alignment, image translation, self-supervision, and disentangled representation
methods, among others. In this paper, we provide a comprehensive literature
review of recent deep UDA approaches in medical imaging from a technical
perspective. Specifically, we categorize current UDA research in medical
imaging into six groups and further divide them into finer subcategories based
on the different tasks they perform. We also discuss the respective datasets
used in the studies to assess the divergence between the different domains.
Finally, we discuss emerging areas and provide insights and discussions on
future research directions to conclude this survey.
Related papers
- A Survey on Domain Generalization for Medical Image Analysis [9.410880477358942]
Domain Generalization for MedIA aims to address the domain shift challenge by generalizing effectively and performing robustly across unknown data distributions.
We provide a formal definition of domain shift and domain generalization in medical field, and discuss several related settings.
We summarize the recent methods from three viewpoints: data manipulation level, feature representation level, and model training level, and present some algorithms in detail.
arXiv Detail & Related papers (2024-02-07T17:08:27Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain.
We propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies.
Our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks.
arXiv Detail & Related papers (2023-11-22T09:18:49Z) - Medical Image Segmentation with Domain Adaptation: A Survey [0.38979646385036165]
This review focuses on domain adaptation approaches for DL-based medical image segmentation.
We first present the motivation and background knowledge underlying domain adaptations, then provide a review of domain adaptation applications in medical image segmentations.
Our goal was to provide researchers with up-to-date references on the applications of domain adaptation in medical image segmentation studies.
arXiv Detail & Related papers (2023-11-03T04:17:06Z) - Domain Generalization for Medical Image Analysis: A Survey [13.34575578242635]
This paper comprehensively reviews domain generalization studies specifically tailored for MedIA.
We categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods.
We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis.
arXiv Detail & Related papers (2023-10-05T09:31:58Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - DARE: Towards Robust Text Explanations in Biomedical and Healthcare
Applications [54.93807822347193]
We show how to adapt attribution robustness estimation methods to a given domain, so as to take into account domain-specific plausibility.
Next, we provide two methods, adversarial training and FAR training, to mitigate the brittleness characterized by DARE.
Finally, we empirically validate our methods with extensive experiments on three established biomedical benchmarks.
arXiv Detail & Related papers (2023-07-05T08:11:40Z) - Unsupervised Pathology Detection: A Deep Dive Into the State of the Art [6.667150890634173]
We evaluate a selection of cutting-edge Unsupervised Anomaly Detection (UAD) methods on multiple medical datasets.
Our experiments demonstrate that newly developed feature-modeling methods from the industrial and medical literature achieve increased performance.
We show that such methods are capable of benefiting from recently developed self-supervised pre-training algorithms.
arXiv Detail & Related papers (2023-03-01T16:03:25Z) - Domain Adaptation for Medical Image Analysis: A Survey [28.365579324731247]
Machine learning techniques used in medical image analysis usually suffer from the domain shift problem caused by different distributions between source/reference data and target data.
As a promising solution, domain adaptation has attracted considerable attention in recent years.
This survey will enable researchers to gain a better understanding of the current status, challenges.
arXiv Detail & Related papers (2021-02-18T17:49:08Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
Survey [53.656086832255944]
Multi-source domain adaptation (MDA) is a powerful extension in which the labeled data may be collected from multiple sources.
MDA has attracted increasing attention in both academia and industry.
arXiv Detail & Related papers (2020-02-26T08:07:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.