Topological magnon-photon interaction for cavity magnonics
- URL: http://arxiv.org/abs/2308.01349v1
- Date: Wed, 2 Aug 2023 18:00:04 GMT
- Title: Topological magnon-photon interaction for cavity magnonics
- Authors: Jongjun M. Lee, Myung-Joong Hwang, Hyun-Woo Lee
- Abstract summary: We find that electrons in the topological surface state efficiently mediate the effective electric dipole coupling between the spin of a ferromagnet and the electric field of the cavity.
We refer to this coupling as topological magnon-photon interaction, estimating it one order of magnitude stronger than the conventional magnon-photon coupling.
- Score: 0.7826806223782052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of cavity magnonics and topological insulators has made significant
advances over the past decade, however the possibility of combining the two
fields is still unexplored. Here, we explore such connection by investigating
hybrid cavity systems that incorporate both a ferromagnet and a topological
insulator. We find that electrons in the topological surface state efficiently
mediate the effective electric dipole coupling between the spin of the
ferromagnet and the electric field of the cavity, in contrast with the
conventional cavity magnonics theory based on magnetic dipole coupling. We
refer to this coupling as topological magnon-photon interaction, estimating it
one order of magnitude stronger than the conventional magnon-photon coupling,
and showing that its sign can be manipulated. We discuss the potential of our
proposed device to allow for scaling down and controlling the cavity system
using electronics. Our results provide solid ground for exploring the
functionalities enabled by merging cavity magnonics with topological
insulators.
Related papers
- Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Topological magnon-polaron transport in a bilayer van der Waals magnet [2.109771307978522]
stacking of intrinsically magnetic van der Waals materials provides a fertile platform to explore tunable transport effects of magnons.
Topologically nontrivial magnons in these systems can further expand the scope of exploration.
arXiv Detail & Related papers (2023-12-12T17:39:22Z) - Engineering synthetic gauge fields through the coupling phases in cavity magnonics [0.06022769903412459]
cavity magnonics is a promising platform for quantum transducers and quantum memories.
In "loop-coupled" systems, where there are at least as many couplings as modes, the coupling phases become relevant for the physics.
We present experimental evidence of the existence of such coupling phases by considering two spheres made of Yttrium-Iron-Garnet and two different re-entrant cavities.
arXiv Detail & Related papers (2023-12-08T09:25:26Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
We study the effect of altermagnetism on the superconductivity of a two-dimensional metal with d-wave altermagnetism and Rashba spin-orbital coupling.
We show that a number of topological superconductors, including both first-order and second-order ones, can emerge when the p-wave pairing dominates.
arXiv Detail & Related papers (2023-05-17T18:00:00Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - A hybrid ferromagnetic transmon qubit: circuit design, feasibility and
detection protocols for magnetic fluctuations [45.82374977939355]
We show that the characteristic hysteretic behavior of the ferromagnetic barrier provides an alternative and intrinsically digital tuning of the qubit frequency by means of magnetic field pulses.
The possibility to use the qubit as a noise detector and its relevance to investigate the subtle interplay of magnetism and superconductivity is envisaged.
arXiv Detail & Related papers (2022-06-01T18:50:26Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Long range magnetic dipole-dipole interaction mediated by a
superconductor [0.0]
Quantum computation and simulation requires strong coherent coupling between qubits, which may be spatially separated.
Here we theoretically investigate a method for achieving such coupling, based on superconducting nano-structures designed to channel the magnetic flux created by the qubits.
We show that such structures could channel the magnetic flux, enhancing the dipole-dipole interaction between spin qubits and changing its scaling with distance, thus potentially paving the way for controllably engineering an interacting spin system.
arXiv Detail & Related papers (2021-07-11T21:16:29Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Cavity magnon-polaritons in cuprate parent compounds [0.0]
cavity control of quantum matter may offer new ways to study and manipulate many-body systems.
We propose a scheme for coupling Terahertz resonators to the antiferromagnetic fluctuations in a cuprate parent compound.
We find a strong, but heavily damped, bimagnon-cavity interaction which produces highly asymmetric cavity line-shapes.
arXiv Detail & Related papers (2021-06-15T01:19:57Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.