COVID-VR: A Deep Learning COVID-19 Classification Model Using
Volume-Rendered Computer Tomography
- URL: http://arxiv.org/abs/2308.01433v1
- Date: Wed, 2 Aug 2023 21:13:10 GMT
- Title: COVID-VR: A Deep Learning COVID-19 Classification Model Using
Volume-Rendered Computer Tomography
- Authors: Noemi Maritza L. Romero and Ricco Vasconcellos and Mariana R. Mendoza
and Jo\~ao L. D. Comba
- Abstract summary: COVID-VR is a novel approach for classifying pulmonary diseases based on volume rendering images of the lungs captured from multiple angles.
This paper introduces COVID-VR, a novel approach for classifying pulmonary diseases based on volume rendering images of the lungs captured from multiple angles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic presented numerous challenges to healthcare systems
worldwide. Given that lung infections are prevalent among COVID-19 patients,
chest Computer Tomography (CT) scans have frequently been utilized as an
alternative method for identifying COVID-19 conditions and various other types
of pulmonary diseases. Deep learning architectures have emerged to automate the
identification of pulmonary disease types by leveraging CT scan slices as
inputs for classification models. This paper introduces COVID-VR, a novel
approach for classifying pulmonary diseases based on volume rendering images of
the lungs captured from multiple angles, thereby providing a comprehensive view
of the entire lung in each image. To assess the effectiveness of our proposal,
we compared it against competing strategies utilizing both private data
obtained from partner hospitals and a publicly available dataset. The results
demonstrate that our approach effectively identifies pulmonary lesions and
performs competitively when compared to slice-based methods.
Related papers
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Automatic segmentation of novel coronavirus pneumonia lesions in CT
images utilizing deep-supervised ensemble learning network [3.110938126026385]
The structure features of COVID-19 lesions are complicated and varied greatly in different cases.
A transfer learning strategy is employed to make up for the shortcoming and alleviate the overfitting problem.
A deep-supervised ensemble learning network is presented to combine local and global features for COVID-19 lesion segmentation.
arXiv Detail & Related papers (2021-10-25T11:49:20Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.