Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models
- URL: http://arxiv.org/abs/2308.01557v2
- Date: Tue, 26 Mar 2024 06:50:43 GMT
- Title: Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models
- Authors: Joao Carvalho, An T. Le, Mark Baierl, Dorothea Koert, Jan Peters,
- Abstract summary: Learning trajectory generative models as priors for a new planning problem is highly desirable.
We propose learning diffusion models as priors to bootstrapping the motion planning problem.
Our experiments show that diffusion models are strong priors to encode high-dimensional trajectory distributions of robot motions.
- Score: 14.171207239507789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning priors on trajectory distributions can help accelerate robot motion planning optimization. Given previously successful plans, learning trajectory generative models as priors for a new planning problem is highly desirable. Prior works propose several ways on utilizing this prior to bootstrapping the motion planning problem. Either sampling the prior for initializations or using the prior distribution in a maximum-a-posterior formulation for trajectory optimization. In this work, we propose learning diffusion models as priors. We then can sample directly from the posterior trajectory distribution conditioned on task goals, by leveraging the inverse denoising process of diffusion models. Furthermore, diffusion has been recently shown to effectively encode data multimodality in high-dimensional settings, which is particularly well-suited for large trajectory dataset. To demonstrate our method efficacy, we compare our proposed method - Motion Planning Diffusion - against several baselines in simulated planar robot and 7-dof robot arm manipulator environments. To assess the generalization capabilities of our method, we test it in environments with previously unseen obstacles. Our experiments show that diffusion models are strong priors to encode high-dimensional trajectory distributions of robot motions.
Related papers
- TrajDiffuse: A Conditional Diffusion Model for Environment-Aware Trajectory Prediction [16.188078087197106]
We propose TrajDiffuse, a planning-based trajectory prediction method using a novel guided conditional diffusion model.
We form the trajectory prediction problem as a denoising impaint task and design a map-based guidance term for the diffusion process.
TrajDiffuse is able to generate trajectory predictions that match or exceed the accuracy and diversity of the SOTA, while adhering almost perfectly to environmental constraints.
arXiv Detail & Related papers (2024-10-14T17:59:03Z) - Multi-Robot Motion Planning with Diffusion Models [22.08293753545732]
We propose a method for generating collision-free multi-robot trajectories.
Our algorithm combines learned diffusion models with classical search-based techniques.
We show how to compose multiple diffusion models to plan in large environments.
arXiv Detail & Related papers (2024-10-04T01:31:13Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
Diffusion models are promising for joint trajectory prediction and controllable generation in autonomous driving.
We introduce Optimal Gaussian Diffusion (OGD) and Estimated Clean Manifold (ECM) Guidance.
Our methodology streamlines the generative process, enabling practical applications with reduced computational overhead.
arXiv Detail & Related papers (2024-08-01T17:59:59Z) - Align Your Steps: Optimizing Sampling Schedules in Diffusion Models [63.927438959502226]
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond.
A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks.
We propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs.
arXiv Detail & Related papers (2024-04-22T18:18:41Z) - Diffusion-ES: Gradient-free Planning with Diffusion for Autonomous Driving and Zero-Shot Instruction Following [21.81411085058986]
Reward-gradient guided denoising generates trajectories that maximize both a differentiable reward function and the likelihood under the data distribution captured by a diffusion model.
We propose DiffusionES, a method that combines gradient-free optimization with trajectory denoising.
We show that DiffusionES achieves state-of-the-art performance on nuPlan, an established closed-loop planning benchmark for autonomous driving.
arXiv Detail & Related papers (2024-02-09T17:18:33Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.