Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances
- URL: http://arxiv.org/abs/2308.01789v1
- Date: Thu, 3 Aug 2023 14:39:02 GMT
- Title: Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances
- Authors: Gloria Turati (1), Maurizio Ferrari Dacrema (1), Paolo Cremonesi (1)
((1) Politecnico di Milano)
- Abstract summary: Adaptative VQAs dynamically modify the circuit structure by adding and removing, and optimize their parameters during the training.
We analyze three Adaptative VQAs: Variational Quantum Eigensolver (EVQE), Variable Ansatz (VAns), and Random Adapt-VQE (RA-VQE), a random approach we introduce as a baseline.
Our analysis sets benchmarks for Adaptative VQAs designed for near-term quantum devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, Variational Quantum Algorithms (VQAs) have emerged as a
promising approach for solving optimization problems on quantum computers in
the NISQ era. However, one limitation of VQAs is their reliance on
fixed-structure circuits, which may not be taylored for specific problems or
hardware configurations. A leading strategy to address this issue are
Adaptative VQAs, which dynamically modify the circuit structure by adding and
removing gates, and optimize their parameters during the training. Several
Adaptative VQAs, based on heuristics such as circuit shallowness, entanglement
capability and hardware compatibility, have already been proposed in the
literature, but there is still lack of a systematic comparison between the
different methods. In this paper, we aim to fill this gap by analyzing three
Adaptative VQAs: Evolutionary Variational Quantum Eigensolver (EVQE), Variable
Ansatz (VAns), already proposed in the literature, and Random Adapt-VQE
(RA-VQE), a random approach we introduce as a baseline. In order to compare
these algorithms to traditional VQAs, we also include the Quantum Approximate
Optimization Algorithm (QAOA) in our analysis. We apply these algorithms to
QUBO problems and study their performance by examining the quality of the
solutions found and the computational times required. Additionally, we
investigate how the choice of the hyperparameters can impact the overall
performance of the algorithms, highlighting the importance of selecting an
appropriate methodology for hyperparameter tuning. Our analysis sets benchmarks
for Adaptative VQAs designed for near-term quantum devices and provides
valuable insights to guide future research in this area.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Classically optimal variational quantum algorithms [0.0]
Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are suitable for implementation on NISQ computers.
In this Letter we expand an implicit step of VQAs: the classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits.
arXiv Detail & Related papers (2021-03-31T13:33:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.