A novel approach for quantum financial simulation and quantum state preparation
- URL: http://arxiv.org/abs/2308.01844v2
- Date: Sat, 20 Apr 2024 11:01:23 GMT
- Title: A novel approach for quantum financial simulation and quantum state preparation
- Authors: Yen-Jui Chang, Wei-Ting Wang, Hao-Yuan Chen, Shih-Wei Liao, Ching-Ray Chang,
- Abstract summary: One of the promising applications of quantum computers is quantum simulation.
This research introduces a novel simulation algorithm, the multi-Split-Steps Quantum Walk (multi-SSQW)
- Score: 1.394020838319518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state preparation is vital in quantum computing and information processing. The ability to accurately and reliably prepare specific quantum states is essential for various applications. One of the promising applications of quantum computers is quantum simulation. This requires preparing a quantum state representing the system we are trying to simulate. This research introduces a novel simulation algorithm, the multi-Split-Steps Quantum Walk (multi-SSQW), designed to learn and load complicated probability distributions using parameterized quantum circuits (PQC) with a variational solver on classical simulators. The multi-SSQW algorithm is a modified version of the split-steps quantum walk, enhanced to incorporate a multi-agent decision-making process, rendering it suitable for modeling financial markets. The study provides theoretical descriptions and empirical investigations of the multi-SSQW algorithm to demonstrate its promising capabilities in probability distribution simulation and financial market modeling. Harnessing the advantages of quantum computation, the multi-SSQW models complex financial distributions and scenarios with high accuracy, providing valuable insights and mechanisms for financial analysis and decision-making. The multi-SSQW's key benefits include its modeling flexibility, stable convergence, and instantaneous computation. These advantages underscore its rapid modeling and prediction potential in dynamic financial markets.
Related papers
- Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Adaptive variational simulation for open quantum systems [0.25602836891933073]
We present an adaptive variational quantum algorithm for simulating open quantum system dynamics.
Our results demonstrate that near-future quantum processors are capable of simulating open quantum systems.
arXiv Detail & Related papers (2023-05-11T16:00:13Z) - iQuantum: A Case for Modeling and Simulation of Quantum Computing
Environments [22.068803245816266]
iQuantum is a first-of-its-kind simulation toolkit that can model hybrid quantum-classical computing environments.
This paper presents the quantum computing system model, architectural design, proof-of-concept implementation, potential use cases, and future development of iQuantum.
arXiv Detail & Related papers (2023-03-28T04:51:32Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - QPanda: high-performance quantum computing framework for multiple
application scenarios [15.954489124674394]
This paper proposes QPanda, an application scenario-oriented quantum programming framework with high-performance simulation.
It implements high-performance simulation of quantum circuits, a configuration of the fusion processing backend of quantum computers and supercomputers, and compilation and optimization methods of quantum programs for NISQ machines.
arXiv Detail & Related papers (2022-12-29T07:38:50Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - MISTIQS: An open-source software for performing quantum dynamics
simulations on quantum computers [1.3192560874022086]
MISTIQS delivers end-to-end functionality for simulating the quantum many-body dynamics of systems governed by time-dependent Heisenberg Hamiltonians.
It provides high-level programming functionality for generating intermediate representations of quantum circuits.
arXiv Detail & Related papers (2021-01-05T22:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.