論文の概要: LOB-Based Deep Learning Models for Stock Price Trend Prediction: A
Benchmark Study
- arxiv url: http://arxiv.org/abs/2308.01915v2
- Date: Tue, 19 Sep 2023 20:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 18:33:45.881313
- Title: LOB-Based Deep Learning Models for Stock Price Trend Prediction: A
Benchmark Study
- Title(参考訳): 株価トレンド予測のためのLOBに基づくディープラーニングモデル:ベンチマーク研究
- Authors: Matteo Prata, Giuseppe Masi, Leonardo Berti, Viviana Arrigoni, Andrea
Coletta, Irene Cannistraci, Svitlana Vyetrenko, Paola Velardi, Novella
Bartolini
- Abstract要約: 我々は、データ前処理、DLモデルトレーニング、評価、利益分析を組み込んだオープンソースのフレームワークを開発する。
実験の結果,すべてのモデルが新たなデータに曝露した場合,大幅な性能低下を示し,実際の市場適用可能性に関する疑問が提起された。
- 参考スコア(独自算出の注目度): 4.714825039388054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advancements in Deep Learning (DL) research have notably
influenced the finance sector. We examine the robustness and generalizability
of fifteen state-of-the-art DL models focusing on Stock Price Trend Prediction
(SPTP) based on Limit Order Book (LOB) data. To carry out this study, we
developed LOBCAST, an open-source framework that incorporates data
preprocessing, DL model training, evaluation and profit analysis. Our extensive
experiments reveal that all models exhibit a significant performance drop when
exposed to new data, thereby raising questions about their real-world market
applicability. Our work serves as a benchmark, illuminating the potential and
the limitations of current approaches and providing insight for innovative
solutions.
- Abstract(参考訳): 近年のディープラーニング(DL)研究の進展は金融セクターに顕著に影響を与えている。
制限順序帳(LOB)データに基づく株価予測(SPTP)に着目した15の最先端DLモデルの堅牢性と一般化性を検討した。
本研究では,データ前処理,DLモデルトレーニング,評価,利益分析を組み込んだオープンソースのフレームワークであるLOBCASTを開発した。
我々の大規模な実験では、すべてのモデルが新しいデータに晒されると大幅な性能低下を示し、それによって実際の市場適用性に関する疑問が提起される。
私たちの仕事はベンチマークとして機能し、現在のアプローチの可能性と限界を照らし出し、革新的なソリューションに対する洞察を提供します。
関連論文リスト
- Optimal Execution with Reinforcement Learning [0.4972323953932129]
本研究では,強化学習による最適実行戦略の開発について検討する。
本稿では,独自のMDPの定式化を行い,提案手法の結果を確認し,標準実行戦略に対して性能をベンチマークする。
論文 参考訳(メタデータ) (2024-11-10T08:21:03Z) - A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications [52.42860559005861]
DPO(Direct Preference Optimization)は、アライメントのための有望なアプローチとして登場した。
DPOの様々な進歩と固有の制限にもかかわらず、これらの側面の詳細なレビューは現在、文献に欠けている。
論文 参考訳(メタデータ) (2024-10-21T02:27:24Z) - Leveraging Fundamental Analysis for Stock Trend Prediction for Profit [0.0]
本稿では,機械学習モデル,Long Short-Term Memory (LSTM), 1次元畳み込みニューラルネットワーク (1D CNN) およびロジスティック回帰 (LR) を用いて,基本解析に基づく株価トレンドの予測を行う。
我々は、2つの予測タスク、すなわち年次株価差(ASPD)と現在の株価と本質的価値(CSPDIV)の差を定式化するために、主要な金融比率とディスクキャッシュフロー(DCF)モデルを採用する。
この結果、LRモデルはCNNおよびLSTMモデルより優れており、ASPDの平均テスト精度は74.66%、DCSPIVは72.85%であることがわかった。
論文 参考訳(メタデータ) (2024-10-04T20:36:19Z) - Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach [6.112119533910774]
本稿では、命令ベースの新しい手法と量子化低ランク適応(QLoRA)圧縮を組み合わせることで、LLM(Large Language Models)命令を微調整することで、高度なアプローチを提案する。
近年の市場指標やアナリストの成績等「外部要因」を統合して、リッチで教師付きデータセットを作成する。
この研究は、最先端のAIを微調整された財務データに統合する能力を実証するだけでなく、AI駆動の財務分析ツールを強化するための将来の研究の道を開く。
論文 参考訳(メタデータ) (2024-08-13T04:53:31Z) - Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis [4.575870619860645]
ファイナンシャルドメインにおけるクレーム検出タスクのための新たな財務データセットを構築した。
本稿では,対象物の専門家(SME)の知識を集約関数に組み込んだ,新たな弱スーパービジョンモデルを提案する。
ここでは、利益の急落と楽観的な指標への回帰の依存を観察する。
論文 参考訳(メタデータ) (2024-02-18T22:55:26Z) - One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
私たちは、モデルがベースオブジェクトカテゴリ毎に1つの例でトレーニングされる、ワンショットのオープンアフォーダンスラーニング(OOAL)を紹介します。
本稿では,視覚的特徴と手頃なテキスト埋め込みとの整合性を高める,シンプルで効果的な設計の視覚言語フレームワークを提案する。
2つのアベイランスセグメンテーションのベンチマーク実験により、提案手法はトレーニングデータの1%未満で最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-29T16:23:06Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
ディープラーニングモデルは、価格予測タスクのための従来の統計モデルと機械学習モデルを置き換えるものだ。
このレビューは、ディープラーニングに基づく予測モデルについて深く掘り下げ、モデルアーキテクチャ、実践的応用、およびそれぞれの利点と欠点に関する情報を提示する。
この貢献には、価格予測のための複雑な構造を持つディープラーニングモデルの有効性を検討するなど、将来の研究に向けた潜在的方向性も含まれている。
論文 参考訳(メタデータ) (2023-04-21T03:46:09Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。