論文の概要: Efficient Sentiment Analysis: A Resource-Aware Evaluation of Feature
Extraction Techniques, Ensembling, and Deep Learning Models
- arxiv url: http://arxiv.org/abs/2308.02022v1
- Date: Thu, 3 Aug 2023 20:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 14:43:20.407442
- Title: Efficient Sentiment Analysis: A Resource-Aware Evaluation of Feature
Extraction Techniques, Ensembling, and Deep Learning Models
- Title(参考訳): 効率的な感情分析:特徴抽出手法,センシング,深層学習モデルの資源対応評価
- Authors: Mahammed Kamruzzaman and Gene Louis Kim
- Abstract要約: 我々は,資源コストに着目した文書レベルの感情分析モデルを評価する。
より小さなデータセットでは,資源消費の差が大きくなるにつれて精度の差が小さくなることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While reaching for NLP systems that maximize accuracy, other important
metrics of system performance are often overlooked. Prior models are easily
forgotten despite their possible suitability in settings where large computing
resources are unavailable or relatively more costly. In this paper, we perform
a broad comparative evaluation of document-level sentiment analysis models with
a focus on resource costs that are important for the feasibility of model
deployment and general climate consciousness. Our experiments consider
different feature extraction techniques, the effect of ensembling,
task-specific deep learning modeling, and domain-independent large language
models (LLMs). We find that while a fine-tuned LLM achieves the best accuracy,
some alternate configurations provide huge (up to 24, 283 *) resource savings
for a marginal (<1%) loss in accuracy. Furthermore, we find that for smaller
datasets, the differences in accuracy shrink while the difference in resource
consumption grows further.
- Abstract(参考訳): 精度を最大化するNLPシステムに到達している間、システムパフォーマンスの他の重要な指標はしばしば見過ごされる。
以前のモデルは、大規模なコンピューティングリソースが利用できない、あるいは比較的コストがかかる設定で適しているにもかかわらず、簡単に忘れられる。
本稿では,モデル展開と一般的な気候意識の実現に重要な資源コストに着目し,文書レベルの感情分析モデルの広範な比較評価を行う。
実験では,異なる特徴抽出手法,センシングの効果,タスク固有の深層学習モデル,ドメインに依存しない大規模言語モデル(llm)について検討した。
微調整 LLM が最高の精度を達成する一方で、いくつかの代替構成は、限界値 (<1%) の精度でリソースを節約できる(最大24, 283* まで)。
さらに,より小さなデータセットでは,リソース消費の差がさらに増加する一方,精度の差は小さくなることがわかった。
関連論文リスト
- Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
この研究は、複数のIoTネットワークデータセットで、Information Gain、Chi-Squared Test、Recursive Feature Elimination、Mean Absolute Deviation、Dispersion Ratioといった、さまざまな機能選択メソッドの組み合わせによって提供される機能セットを評価します。
より小さな特徴セットがMLモデルの分類性能とトレーニング時間の両方に与える影響を比較し,IoT侵入検出の計算効率を高めることを目的とした。
論文 参考訳(メタデータ) (2024-06-12T09:51:29Z) - Applying Fine-Tuned LLMs for Reducing Data Needs in Load Profile Analysis [9.679453060210978]
本稿では、負荷プロファイル解析におけるデータ要求を最小限に抑えるために、LLM(en: Fine-tuned Large Language Models)を利用する新しい手法を提案する。
2段階の微調整戦略が提案され、データ復元作業の欠如に対して事前訓練されたLLMを適用する。
BERT-PIN などの最先端モデルに匹敵する性能を達成し,その精度向上のための微調整モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-06-02T23:18:11Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
選好学習は、好ましくない出力よりも、好ましくない出力により高い確率を割り当てるようにモデルを訓練する、という従来の知恵を考察する。
多くの最先端の選好調整モデルでは、一般的な選好データセットでは60%未満のランキング精度が得られている。
論文 参考訳(メタデータ) (2024-05-29T21:29:44Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
大規模言語モデル(LLM)は、大量のテキストデータから貴重な洞察を抽出するための強力なツールとして登場した。
本研究では,TripAdvisor 投稿から旅行客のニーズを抽出するための LLM の比較分析を行った。
特にMistral 7Bは,大規模クローズドモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-04-27T18:28:10Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
大規模で事前訓練されたモデルは、問題を解決するのに必要なタスク固有のデータの量を劇的に削減するが、多くの場合、ドメイン固有のニュアンスを箱から取り出すのに失敗する。
本稿では,NLPとマルチモーダル学習の最近の進歩を活用して,検索エンジン検索による事前学習モデルを強化する方法について述べる。
論文 参考訳(メタデータ) (2023-11-29T05:33:28Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
我々は、下流学習アルゴリズムに不利な方法でトレーニングデータを評価できる新しいフレームワークを導入する。
本研究では,訓練と検証セット間の非伝統的なクラスワイドワッサースタイン距離に基づいて,トレーニングセットに関連する検証性能のプロキシを開発する。
距離は、特定のリプシッツ条件下での任意のモデルに対する検証性能の上限を特徴付けることを示す。
論文 参考訳(メタデータ) (2023-04-28T19:05:16Z) - Complementary Ensemble Learning [1.90365714903665]
我々は最先端のディープラーニングモデルの性能向上手法を考案した。
具体的には、最先端モデルの不確実性を補完できる補助モデルを訓練する。
論文 参考訳(メタデータ) (2021-11-09T03:23:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。