論文の概要: Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach
- arxiv url: http://arxiv.org/abs/2412.04183v1
- Date: Thu, 05 Dec 2024 14:21:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:59.159477
- Title: Linear Discriminant Analysis in Credit Scoring: A Transparent Hybrid Model Approach
- Title(参考訳): クレジット・スコーリングにおける線形判別分析:透過的ハイブリッドモデルアプローチ
- Authors: Md Shihab Reza, Monirul Islam Mahmud, Ifti Azad Abeer, Nova Ahmed,
- Abstract要約: 特徴量削減手法として線形判別分析 (LDA) を実装し, モデルの複雑さの軽減を図る。
我々のハイブリッドモデルであるXG-DNNは、99.45%の精度と99%のF1スコアでLDAを上回りました。
モデル決定を解釈するために、LIME (local) と Morris Sensitivity Analysis (global) という2つの異なる説明可能なAI技術を適用した。
- 参考スコア(独自算出の注目度): 9.88281854509076
- License:
- Abstract: The development of computing has made credit scoring approaches possible, with various machine learning (ML) and deep learning (DL) techniques becoming more and more valuable. While complex models yield more accurate predictions, their interpretability is often weakened, which is a concern for credit scoring that places importance on decision fairness. As features of the dataset are a crucial factor for the credit scoring system, we implement Linear Discriminant Analysis (LDA) as a feature reduction technique, which reduces the burden of the models complexity. We compared 6 different machine learning models, 1 deep learning model, and a hybrid model with and without using LDA. From the result, we have found our hybrid model, XG-DNN, outperformed other models with the highest accuracy of 99.45% and a 99% F1 score with LDA. Lastly, to interpret model decisions, we have applied 2 different explainable AI techniques named LIME (local) and Morris Sensitivity Analysis (global). Through this research, we showed how feature reduction techniques can be used without affecting the performance and explainability of the model, which can be very useful in resource-constrained settings to optimize the computational workload.
- Abstract(参考訳): コンピューティングの開発により、さまざまな機械学習(ML)とディープラーニング(DL)技術がますます価値を増し、クレジットスコアリングのアプローチが可能になった。
複雑なモデルはより正確な予測をもたらすが、その解釈可能性はしばしば弱まり、これは決定の公平性に重きを置く信用スコアにとっての懸念である。
このデータセットの特徴が信用スコアシステムにとって重要な要素であるため,モデル複雑性の負担を軽減するため,LDA(Linear Discriminant Analysis)を特徴量削減手法として実装する。
我々は、LDAを使用しない6つの異なる機械学習モデル、1つのディープラーニングモデル、ハイブリッドモデルを比較した。
その結果、我々のハイブリッドモデルであるXG-DNNは99.45%の精度と99%のF1スコアをLDAで上回りました。
最後に、モデル決定を解釈するために、LIME (local) と Morris Sensitivity Analysis (global) という2つの異なる説明可能なAI技術を適用した。
本研究では,モデルの性能と説明可能性に影響を与えることなく,特徴量削減技術をどのように利用できるかを示す。
関連論文リスト
- Green LIME: Improving AI Explainability through Design of Experiments [44.99833362998488]
Local Interpretable Model-Agnostic Explanations (LIME)は、興味のあるインスタンスの近くで新しいデータポイントを生成し、それらをモデルに渡すことによって、説明を提供する。
LIMEは非常に多用途であり、幅広いモデルやデータセットに適用できる。
実験の手法を最適に設計することにより、複素モデルの関数評価の回数を減らすことができる。
論文 参考訳(メタデータ) (2025-02-18T11:15:04Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Mini-Hes: A Parallelizable Second-order Latent Factor Analysis Model [8.06111903129142]
本稿では,LFAモデル構築のためのミニブロック対角ヘシアンフリー(Mini-Hes)最適化を提案する。
実験結果から,Mini-Hesでは,LFAモデルは欠落したデータ推定タスクに対処する上で,いくつかの最先端モデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-19T08:43:00Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Quality In / Quality Out: Data quality more relevant than model choice in anomaly detection with the UGR'16 [0.29998889086656577]
ベンチマークデータセットの比較的小さな変更は、考慮された特定のML手法よりも、モデルパフォーマンスに著しく影響することを示します。
また、不正確なラベル付けの結果、測定されたモデル性能が不確かであることも示す。
論文 参考訳(メタデータ) (2023-05-31T12:03:12Z) - Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions [0.0]
本稿では、説明可能なAI(XAI)の実践に関連する2つの異なる質問について検討する。
この研究では、単一分類器(論理回帰、決定木、LDA、QDA)、異種アンサンブル(AdaBoost、ランダムフォレスト)、シーケンシャルニューラルネットワークなど、さまざまな機械学習モデルを比較した。
LIMEとSHAPの2つの高度なポストホックモデル説明可能性技術を用いて、MLベースのクレジットスコアリングモデルを評価する。
論文 参考訳(メタデータ) (2022-09-19T21:44:42Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。