論文の概要: Likelihood-ratio-based confidence intervals for neural networks
- arxiv url: http://arxiv.org/abs/2308.02221v1
- Date: Fri, 4 Aug 2023 09:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 13:21:31.878888
- Title: Likelihood-ratio-based confidence intervals for neural networks
- Title(参考訳): 確率比に基づくニューラルネットワークの信頼区間
- Authors: Laurens Sluijterman, Eric Cator, Tom Heskes
- Abstract要約: 本稿では、ニューラルネットワークに対する信頼区間を構築するための、新しい確率比に基づくアプローチを初めて導入する。
この手法の現在の実装は、多くのディープラーニングアプリケーションでは違法にコストがかかるが、医療予測や天体物理学のような特定の分野において、すでに高いコストが正当化されている可能性がある。
この研究は、確率比に基づく不確実性推定の有意義な可能性を強調し、将来の研究への有望な道筋を確立する。
- 参考スコア(独自算出の注目度): 1.4610038284393165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a first implementation of a novel
likelihood-ratio-based approach for constructing confidence intervals for
neural networks. Our method, called DeepLR, offers several qualitative
advantages: most notably, the ability to construct asymmetric intervals that
expand in regions with a limited amount of data, and the inherent incorporation
of factors such as the amount of training time, network architecture, and
regularization techniques. While acknowledging that the current implementation
of the method is prohibitively expensive for many deep-learning applications,
the high cost may already be justified in specific fields like medical
predictions or astrophysics, where a reliable uncertainty estimate for a single
prediction is essential. This work highlights the significant potential of a
likelihood-ratio-based uncertainty estimate and establishes a promising avenue
for future research.
- Abstract(参考訳): 本稿では,ニューラルネットの信頼区間構築のための新しい確率比に基づく手法を初めて実装する。
我々の手法はDeepLRと呼ばれ、データ量に制限のある領域に広がる非対称区間を構築する能力や、トレーニング時間、ネットワークアーキテクチャ、正規化技術などの要素を固有に組み込む能力など、いくつかの定性的な利点を提供している。
この手法の現在の実装は、多くのディープラーニングアプリケーションでは違法に高価であることを認めている一方で、高いコストは、医学的予測や天体物理学のような特定の分野において既に正当化されている。
本研究は,確率比に基づく不確実性推定の有意な可能性を強調し,今後の研究の道筋を確立するものである。
関連論文リスト
- Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning [0.36832029288386137]
本手法は, 適用された最適化アルゴリズムに固有の雑音からデータの不確実性を正しく解き放つことのできる, 有効な非パラメトリックブートストラップ法である。
提案したアドホック法は、トレーニングプロセスに干渉することなく、ディープニューラルネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2024-06-20T05:51:37Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Learning Expressive Priors for Generalization and Uncertainty Estimation
in Neural Networks [77.89179552509887]
本稿では,ディープニューラルネットワークにおける一般化と不確実性推定を推し進める新しい事前学習手法を提案する。
キーとなる考え方は、ニューラルネットワークのスケーラブルで構造化された後部を、一般化を保証する情報的事前として活用することである。
本研究では,不確実性推定と一般化における本手法の有効性を徹底的に示す。
論文 参考訳(メタデータ) (2023-07-15T09:24:33Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
機械学習では、特定の入力が正しい確率を正確に予測することがリスク管理に不可欠である。
機械学習モデルにおける不確実性推定を改善するための新しい幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2023-01-11T13:19:24Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
論文 参考訳(メタデータ) (2022-11-17T20:13:39Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
組込みエッジシステム上に展開されたNNにおける予測不確実性推定のための効率的なフレームワークを提案する。
フレームワークは1つのフォワードパスのみに基づいて予測の不確実性を提供するために、ゼロから構築されている。
提案手法は, 堅牢かつ正確な不確実性推定だけでなく, システム性能の点で最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-02-11T11:44:32Z) - Confidence-Aware Learning for Deep Neural Networks [4.9812879456945]
本稿では,新たな損失関数であるCorrectness Ranking Lossを用いたディープニューラルネットワークのトレーニング手法を提案する。
クラス確率を明示的に規則化し、信頼度に応じて順序付けされたランキングでより良い信頼度の推定を行う。
従来の深層分類器とほぼ同じ計算コストを持ち、1つの推論で信頼性のある予測を出力する。
論文 参考訳(メタデータ) (2020-07-03T02:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。