論文の概要: Algorithm for evaluating distance-based entanglement measures
- arxiv url: http://arxiv.org/abs/2308.02326v1
- Date: Fri, 4 Aug 2023 13:42:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:52:00.121556
- Title: Algorithm for evaluating distance-based entanglement measures
- Title(参考訳): 距離に基づく絡み合いの評価アルゴリズム
- Authors: Yixuan Hu, Ye-Chao Liu, Jiangwei Shang
- Abstract要約: 本稿では,距離に基づく絡み合い評価のための効率的なアルゴリズムを提案する。
我々のアプローチは、与えられた任意の状態の絡み合いに信頼性の高い上限を与える、凸最適化のためのギルバートのアルゴリズムに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying entanglement in quantum systems is an important yet challenging
task due to its NP-hard nature. In this work, we propose an efficient algorithm
for evaluating distance-based entanglement measures. Our approach builds on
Gilbert's algorithm for convex optimization, providing a reliable upper bound
on the entanglement of a given arbitrary state. We demonstrate the
effectiveness of our algorithm by applying it to various examples, such as
calculating the squared Bures metric of entanglement as well as the relative
entropy of entanglement for GHZ states, $W$ states, Horodecki states, and
chessboard states. These results demonstrate that our algorithm is a versatile
and accurate tool that can quickly provide reliable upper bounds for
entanglement measures.
- Abstract(参考訳): 量子系における絡み合いの定量化は、NPハードの性質のため重要な課題である。
本研究では,距離に基づく絡み合い評価のための効率的なアルゴリズムを提案する。
本手法はgilbertの凸最適化アルゴリズムを基礎とし,任意の状態の絡み合いに対する信頼性の高い上限を与える。
提案手法は,エンタングルメントの2乗バーズ計量の計算や,ghz状態のエンタングルメントの相対エントロピー,$w$状態,horodecki状態,チェスボード状態など,様々な例に適用して有効性を示す。
これらの結果から,我々のアルゴリズムは,絡み合い対策の信頼性の高い上限を迅速に提供できる汎用的で正確なツールであることが示された。
関連論文リスト
- On Uncertainty Quantification for Near-Bayes Optimal Algorithms [2.622066970118316]
本研究では, タスク分布によって定義されたベイズ後続部を, アルゴリズムを用いてマーチンゲール後続部を構築することにより, 未知だが最適であるベイズ後続部を復元可能であることを示す。
様々な非NNアルゴリズムとNNアルゴリズムに基づく実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-28T12:42:25Z) - Optimal Coherent Quantum Phase Estimation via Tapering [0.0]
量子位相推定は、多くの量子アルゴリズムを支える基本的なプリミティブの1つである。
我々は,テープ型量子位相推定アルゴリズムと呼ばれる標準アルゴリズムの改良版を提案する。
提案アルゴリズムは,高コストなコヒーレント中央値手法を必要とせず,最適なクエリ複雑性を実現する。
論文 参考訳(メタデータ) (2024-03-27T18:17:23Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
本研究では,実施行動と訪問状態の観測可能な履歴に基づいて,人間エージェントによる動的決定の構造モデルの推定作業を検討する。
この問題には固有のネスト構造があり、内部問題では与えられた報酬関数に対する最適ポリシーが特定され、外部問題では適合度の測定が最大化される。
本研究では,高次元状態空間を扱うための有限時間保証付き単一ループ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-04T00:11:38Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
ノード重み付きグラフが与えられたとき、ノード重みが最大となる独立した(相互に非隣接な)ノードの集合を見つける。
このアプリケーションで放送されるグラフの中には、数十万のノードと数億のエッジを持つ大きなものもあります。
我々は,不規則なランダム化適応検索フレームワークにおいてメタヒューリスティックな新しい局所探索アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-28T21:34:16Z) - Self-Guided Quantum State Learning for Mixed States [7.270980742378388]
我々のアルゴリズムの健全な特徴は、非忠実次元$d$状態における効率的な$O left(d3 right)$後処理である。
測定ノイズに対する高いレジリエンスは、ノイズの多い中間スケール量子アプリケーションに我々のアルゴリズムを適合させる。
論文 参考訳(メタデータ) (2021-06-11T04:40:26Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
ネットワークのノードにまたがるスムーズな凸関数の和を分散化最小化する作業について検討する。
本稿では,この分散最適化問題に対する2つの新しいアルゴリズムを提案し,複雑性を保証する。
論文 参考訳(メタデータ) (2020-06-21T11:23:20Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。