論文の概要: Adapting to Change: Robust Counterfactual Explanations in Dynamic Data
Landscapes
- arxiv url: http://arxiv.org/abs/2308.02353v1
- Date: Fri, 4 Aug 2023 14:41:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 12:44:32.600170
- Title: Adapting to Change: Robust Counterfactual Explanations in Dynamic Data
Landscapes
- Title(参考訳): 変化への適応:動的データランドスケープにおけるロバストな反事実的説明
- Authors: Bardh Prenkaj, Mario Villaizan-Vallelado, Tobias Leemann, Gjergji
Kasneci
- Abstract要約: 我々は、新しい半教師付きグラフカウンターファクトExplainer(GCE)方法論、ダイナミックGRAphカウンタファクトExplainer(DyGRACE)を紹介する。
これは、データ配布に関する初期知識を活用して、有効な偽物を探すと同時に、後続の時間ステップにおいて、潜在的に時代遅れな決定関数からの情報を使用することを避けます。
DyGRACEは非常に効果的でドリフト検出器として機能し、反復間の再構成誤差の違いに基づいて分布ドリフトを識別する。
- 参考スコア(独自算出の注目度): 9.943459106509687
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a novel semi-supervised Graph Counterfactual Explainer (GCE)
methodology, Dynamic GRAph Counterfactual Explainer (DyGRACE). It leverages
initial knowledge about the data distribution to search for valid
counterfactuals while avoiding using information from potentially outdated
decision functions in subsequent time steps. Employing two graph autoencoders
(GAEs), DyGRACE learns the representation of each class in a binary
classification scenario. The GAEs minimise the reconstruction error between the
original graph and its learned representation during training. The method
involves (i) optimising a parametric density function (implemented as a
logistic regression function) to identify counterfactuals by maximising the
factual autoencoder's reconstruction error, (ii) minimising the counterfactual
autoencoder's error, and (iii) maximising the similarity between the factual
and counterfactual graphs. This semi-supervised approach is independent of an
underlying black-box oracle. A logistic regression model is trained on a set of
graph pairs to learn weights that aid in finding counterfactuals. At inference,
for each unseen graph, the logistic regressor identifies the best
counterfactual candidate using these learned weights, while the GAEs can be
iteratively updated to represent the continual adaptation of the learned graph
representation over iterations. DyGRACE is quite effective and can act as a
drift detector, identifying distributional drift based on differences in
reconstruction errors between iterations. It avoids reliance on the oracle's
predictions in successive iterations, thereby increasing the efficiency of
counterfactual discovery. DyGRACE, with its capacity for contrastive learning
and drift detection, will offer new avenues for semi-supervised learning and
explanation generation.
- Abstract(参考訳): 本稿では,新しい半教師付きグラフカウンターファクトExplainer (GCE) 手法, Dynamic GRAph Counterfactual Explainer (DyGRACE) を紹介する。
データ配布に関する初期の知識を活用して、適切な偽物を探すと同時に、潜在的に時代遅れな決定関数からの情報の使用を回避している。
2つのグラフオートエンコーダ(GAE)を使用して、DyGRACEはバイナリ分類シナリオで各クラスの表現を学ぶ。
GAEは、トレーニング中の元のグラフとその学習された表現の間の再構成誤差を最小化する。
その方法は
一 自己エンコーダの復元誤差を最大化することにより、パラメトリック密度関数(ロジスティック回帰関数として実装)を最適化し、反事実を特定すること。
(ii)偽のオートエンコーダの誤差を最小化すること、及び
3) 実数グラフと実数グラフの類似性を最大化する。
この半教師付きアプローチは、下層のブラックボックスオラクルとは独立である。
ロジスティック回帰モデルは、反事実を見つけるのに役立つ重みを学習するために一連のグラフペアで訓練される。
推論では、各未確認グラフに対して、ロジスティック回帰器はこれらの学習重みを用いた最良の反事実候補を識別し、GAEは反復による学習グラフ表現の連続的な適応を表現するために反復的に更新することができる。
DyGRACEは非常に効果的でドリフト検出器として機能し、反復間の再構成誤差の違いに基づいて分布ドリフトを識別する。
連続反復におけるオラクルの予測への依存を回避し、反事実発見の効率を高める。
DyGRACEは、対照的な学習とドリフト検出の能力を持ち、半教師付き学習と説明生成のための新しい道を提供する。
関連論文リスト
- Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation [34.93725892725111]
トレーニングレコメンデータシステム(RecSys)におけるグラフ畳み込みネットワーク(GCNs)は、絶え間なく懸念されてきた。
本稿では,学習段階におけるグラフ畳み込みの必要性を批判的に考察する。
光後学習グラフ正規分方程式(LightGODE)という革新的な方法を導入する。
論文 参考訳(メタデータ) (2024-07-26T17:59:32Z) - RegExplainer: Generating Explanations for Graph Neural Networks in Regression Tasks [10.473178462412584]
グラフ回帰モデル(XAIG-R)を解釈する新しい説明法を提案する。
本手法は分散シフト問題と連続順序決定境界問題に対処する。
回帰タスクにおいて連続的に順序付けられたラベルに取り組むための自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2023-07-15T16:16:22Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Counterfactual Intervention Feature Transfer for Visible-Infrared Person
Re-identification [69.45543438974963]
視覚赤外人物再識別タスク(VI-ReID)におけるグラフベースの手法は,2つの問題により,悪い一般化に悩まされている。
十分に訓練された入力特徴は、グラフトポロジーの学習を弱め、推論過程において十分に一般化されない。
本稿では,これらの問題に対処するためのCIFT法を提案する。
論文 参考訳(メタデータ) (2022-08-01T16:15:31Z) - Features Based Adaptive Augmentation for Graph Contrastive Learning [0.0]
自己監督学習は、グラフ表現学習における高価なアノテーションの必要性を排除することを目的としている。
機能に基づく適応拡張(FebAA)アプローチを導入し、潜在的に影響力のある機能を特定し保存する。
8つのグラフ表現学習のベンチマークデータセットにおいて,GRACEとBGRLの精度を向上させることに成功した。
論文 参考訳(メタデータ) (2022-07-05T03:41:20Z) - Let Invariant Rationale Discovery Inspire Graph Contrastive Learning [98.10268114789775]
ハイパフォーマンスな拡張は、インスタンス識別に関するアンカーグラフの健全な意味を保存すべきである。
新たなフレームワーク Rationale-aware Graph Contrastive Learning (RGCL) を提案する。
RGCLは有理数生成器を使用して、グラフのインスタンス識別に関する健全な特徴を論理として明らかにし、対照的な学習のための有理数認識ビューを生成する。
論文 参考訳(メタデータ) (2022-06-16T01:28:40Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
実世界のレコメンデーションシステムは、新しいデータを維持するために定期的に再トレーニングする必要がある。
本研究では,GCNに基づくレコメンデータモデルを用いて,グラフ畳み込みネットワーク(GCN)を効率的に再学習する方法を検討する。
論文 参考訳(メタデータ) (2021-08-16T04:20:09Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Distributed Training of Graph Convolutional Networks using Subgraph
Approximation [72.89940126490715]
本稿では,グラフの複数の分割にまたがる失われる情報をサブグラフ近似スキームで緩和するトレーニング戦略を提案する。
サブグラフ近似アプローチは、分散トレーニングシステムが単一マシン精度で収束するのに役立つ。
論文 参考訳(メタデータ) (2020-12-09T09:23:49Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
本稿では,属性グラフにおけるノード分類処理のための新しいグラフベース能動学習アルゴリズムを提案する。
提案アルゴリズムは,線形化グラフ畳み込みニューラルネットワーク(GCN)と等価なグラフ認識ロジスティック回帰を用いて,予測フェーズの誤差低減を最大化する。
5つの公開ベンチマークデータセットで実験を行い、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-07-09T18:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。