論文の概要: Collaborative filtering to capture AI user's preferences as norms
- arxiv url: http://arxiv.org/abs/2308.02542v2
- Date: Thu, 10 Aug 2023 20:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 16:13:21.132909
- Title: Collaborative filtering to capture AI user's preferences as norms
- Title(参考訳): AIユーザの嗜好を標準として捉えるコラボレーションフィルタリング
- Authors: Marc Serramia, Natalia Criado, Michael Luck
- Abstract要約: 現在のメソッドでは、過剰なユーザの関与が必要で、真の好みをキャプチャできない。
我々は、規範を構築する際に新しい視点が必要であると論じる。
推薦システムにインスパイアされた我々は、協調フィルタリングが適切なアプローチをもたらすと信じている。
- 参考スコア(独自算出の注目度): 0.4640835690336652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Customising AI technologies to each user's preferences is fundamental to them
functioning well. Unfortunately, current methods require too much user
involvement and fail to capture their true preferences. In fact, to avoid the
nuisance of manually setting preferences, users usually accept the default
settings even if these do not conform to their true preferences. Norms can be
useful to regulate behaviour and ensure it adheres to user preferences but,
while the literature has thoroughly studied norms, most proposals take a formal
perspective. Indeed, while there has been some research on constructing norms
to capture a user's privacy preferences, these methods rely on domain knowledge
which, in the case of AI technologies, is difficult to obtain and maintain. We
argue that a new perspective is required when constructing norms, which is to
exploit the large amount of preference information readily available from whole
systems of users. Inspired by recommender systems, we believe that
collaborative filtering can offer a suitable approach to identifying a user's
norm preferences without excessive user involvement.
- Abstract(参考訳): それぞれのユーザの好みに合わせてAIテクノロジをカスタマイズすることは、それらがうまく機能することの基本である。
残念なことに、現在のメソッドはあまりにも多くのユーザの関与を必要とし、真の好みを捉えない。
実際、手動で設定する設定の煩雑さを避けるために、ユーザーは通常、実際の設定に従わなくてもデフォルトの設定を受け入れる。
ノルムは行動の規制やユーザの嗜好の遵守に有用であるが、文献は規範を徹底的に研究しているが、ほとんどの提案は形式的な視点を採っている。
実際、ユーザのプライバシの好みを捉えるための規範を構築する研究がいくつか行われているが、これらの手法は、AI技術の場合、取得と維持が困難であるドメイン知識に依存している。
我々は、ユーザのシステム全体から簡単に利用できる大量の選好情報を活用し、規範を構築する際に新たな視点が必要であると主張する。
リコメンダシステムに触発されて、コラボレーティブフィルタリングは、過度なユーザの関与なしにユーザの規範的好みを識別するための適切なアプローチを提供することができると信じている。
関連論文リスト
- User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - Separating and Learning Latent Confounders to Enhancing User Preferences Modeling [6.0853798070913845]
我々は、推薦のための新しいフレームワーク、SLFR(Separating and Learning Latent Confounders for Recommendation)を提案する。
SLFRは、未測定の共同設立者の表現を取得し、ユーザ嗜好と未測定の共同設立者を遠ざけ、反実的なフィードバックを識別する。
5つの実世界のデータセットで実験を行い、本手法の利点を検証した。
論文 参考訳(メタデータ) (2023-11-02T08:42:50Z) - Predicting Privacy Preferences for Smart Devices as Norms [14.686788596611251]
ユーザの嗜好を規範として予測するための協調フィルタリング手法を提案する。
スマートアシスタントユーザーのプライバシー嗜好のデータセットを用いて、予測の正確性をテストする。
論文 参考訳(メタデータ) (2023-02-21T13:07:30Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Preference Dynamics Under Personalized Recommendations [12.89628003097857]
ユーザがパーソナライズされたコンテンツレコメンデーションを受けると、偏光に類似する現象が生じるかどうかを示す。
より興味深い目的は、リコメンデーションアルゴリズムがユーザの好みの定常性を保証するための条件を理解することである。
論文 参考訳(メタデータ) (2022-05-25T19:29:53Z) - Estimating and Penalizing Induced Preference Shifts in Recommender
Systems [10.052697877248601]
システムデザイナは、レコメンデータが引き起こすシフトを見積もること、そのようなシフトが望まないかどうかを評価すること、さらには問題のあるシフトを避けるために積極的に最適化すること、などを議論する。
我々は、過去のユーザインタラクションデータを使用して、その好みのダイナミクスを暗黙的に含む予測的ユーザモデルをトレーニングする。
シミュレーション実験では、学習した嗜好動態モデルがユーザの嗜好を推定し、新しいレコメンデーションに対してどのように反応するかを示す。
論文 参考訳(メタデータ) (2022-04-25T21:04:46Z) - Leveraging Privacy Profiles to Empower Users in the Digital Society [7.350403786094707]
市民のプライバシーと倫理は、ますますデジタル化されつつある社会によってもたらされる懸念の中核にある。
我々は、フィットネス領域から収集された既存のデータセットに関する実証的研究を通じて、プライバシの次元に注目し、上記の方向のステップに貢献する。
その結果、セマンティック駆動型質問のコンパクトなセットは、複雑なドメイン依存質問よりもユーザを識別するのに役立つことがわかった。
論文 参考訳(メタデータ) (2022-04-01T15:31:50Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
行列分解に基づく協調フィルタリングアルゴリズムは,ある種のステレオタイピングを誘導することを示す。
一般のユーザ層では、テキストセットの好みが反相関性がある場合、これらの項目は、ユーザーには推奨されない。
本稿では,各ユーザの多様な利害関係を捉えるために,代替的なモデリング修正を提案する。
論文 参考訳(メタデータ) (2021-06-23T18:37:47Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。