SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
- URL: http://arxiv.org/abs/2308.02594v4
- Date: Tue, 22 Oct 2024 17:29:53 GMT
- Title: SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents
- Authors: Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Ramesh S,
- Abstract summary: This paper introduces SMARLA, a black-box safety monitoring approach specifically designed for Deep Reinforcement Learning (DRL) agents.
SMARLA utilizes machine learning to predict safety violations by observing the agent's behavior during execution.
Empirical results reveal that SMARLA is accurate at predicting safety violations, with a low false positive rate, and can predict violations at an early stage, approximately halfway through the execution of the agent, before violations occur.
- Score: 7.33319373357049
- License:
- Abstract: Deep Reinforcement Learning (DRL) has made significant advancements in various fields, such as autonomous driving, healthcare, and robotics, by enabling agents to learn optimal policies through interactions with their environments. However, the application of DRL in safety-critical domains presents challenges, particularly concerning the safety of the learned policies. DRL agents, which are focused on maximizing rewards, may select unsafe actions, leading to safety violations. Runtime safety monitoring is thus essential to ensure the safe operation of these agents, especially in unpredictable and dynamic environments. This paper introduces SMARLA, a black-box safety monitoring approach specifically designed for DRL agents. SMARLA utilizes machine learning to predict safety violations by observing the agent's behavior during execution. The approach is based on Q-values, which reflect the expected reward for taking actions in specific states. SMARLA employs state abstraction to reduce the complexity of the state space, enhancing the predictive capabilities of the monitoring model. Such abstraction enables the early detection of unsafe states, allowing for the implementation of corrective and preventive measures before incidents occur. We quantitatively and qualitatively validated SMARLA on three well-known case studies widely used in DRL research. Empirical results reveal that SMARLA is accurate at predicting safety violations, with a low false positive rate, and can predict violations at an early stage, approximately halfway through the execution of the agent, before violations occur. We also discuss different decision criteria, based on confidence intervals of the predicted violation probabilities, to trigger safety mechanisms aiming at a trade-off between early detection and low false positive rates.
Related papers
- Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
arXiv Detail & Related papers (2024-09-26T21:00:45Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Anomalous State Sequence Modeling to Enhance Safety in Reinforcement Learning [0.0]
We propose a safe reinforcement learning (RL) approach that utilizes an anomalous state sequence to enhance RL safety.
In experiments on multiple safety-critical environments including self-driving cars, our solution approach successfully learns safer policies.
arXiv Detail & Related papers (2024-07-29T10:30:07Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
This paper introduces InferAct, a novel approach to proactively detect potential errors before risky actions are executed.
InferAct acts as a human proxy, detecting unsafe actions and alerting users for intervention.
Experiments on three widely-used tasks demonstrate the effectiveness of InferAct.
arXiv Detail & Related papers (2024-07-16T15:24:44Z) - From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards [4.0645651835677565]
We investigate the effectiveness of safety measures by evaluating models on already mitigated biases.
We create a set of non-toxic prompts, which we then use to evaluate Llama models.
We observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms.
arXiv Detail & Related papers (2024-03-20T00:22:38Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Safe Deep Reinforcement Learning by Verifying Task-Level Properties [84.64203221849648]
Cost functions are commonly employed in Safe Deep Reinforcement Learning (DRL)
The cost is typically encoded as an indicator function due to the difficulty of quantifying the risk of policy decisions in the state space.
In this paper, we investigate an alternative approach that uses domain knowledge to quantify the risk in the proximity of such states by defining a violation metric.
arXiv Detail & Related papers (2023-02-20T15:24:06Z) - Safe Reinforcement Learning via Shielding for POMDPs [29.058332307331785]
Reinforcement learning (RL) in safety-critical environments requires an agent to avoid decisions with catastrophic consequences.
We propose and thoroughly evaluate a tight integration of formally-verified shields for POMDPs with state-of-the-art deep RL algorithms.
We empirically demonstrate that an RL agent using a shield, beyond being safe, converges to higher values of expected reward.
arXiv Detail & Related papers (2022-04-02T03:51:55Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.