From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
- URL: http://arxiv.org/abs/2403.13213v4
- Date: Fri, 5 Jul 2024 15:40:13 GMT
- Title: From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
- Authors: Khaoula Chehbouni, Megha Roshan, Emmanuel Ma, Futian Andrew Wei, Afaf Taik, Jackie CK Cheung, Golnoosh Farnadi,
- Abstract summary: We investigate the effectiveness of safety measures by evaluating models on already mitigated biases.
We create a set of non-toxic prompts, which we then use to evaluate Llama models.
We observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms.
- Score: 4.0645651835677565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have also introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
Related papers
- How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability.
This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem.
We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs.
arXiv Detail & Related papers (2025-02-20T12:07:40Z) - Vulnerability Mitigation for Safety-Aligned Language Models via Debiasing [12.986006070964772]
Safety alignment is an essential research topic for real-world AI applications.
Our study first identified the difficulty of eliminating such vulnerabilities without sacrificing the model's helpfulness.
Our method could enhance the model's helpfulness while maintaining safety, thus improving the trade-off-front.
arXiv Detail & Related papers (2025-02-04T09:31:54Z) - Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
We introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states.
Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility.
arXiv Detail & Related papers (2025-02-03T04:23:33Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
We introduce Agent-SafetyBench, a comprehensive benchmark to evaluate the safety of large language models (LLMs)
Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions.
Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%.
arXiv Detail & Related papers (2024-12-19T02:35:15Z) - On Evaluating the Durability of Safeguards for Open-Weight LLMs [80.36750298080275]
We discuss whether technical safeguards can impede the misuse of large language models (LLMs)
We show that even evaluating these defenses is exceedingly difficult and can easily mislead audiences into thinking that safeguards are more durable than they really are.
We suggest future research carefully cabin claims to more constrained, well-defined, and rigorously examined threat models.
arXiv Detail & Related papers (2024-12-10T01:30:32Z) - Mitigating Unsafe Feedback with Learning Constraints [26.872318173182414]
We show that safety-aligned Large Language Models can explore unsafe action spaces through generating harmful text.
We adapt a number of both "implict" and "explicit" harmful fine-tuning defences to evaluate whether they are effective as learning constraints.
arXiv Detail & Related papers (2024-09-19T17:10:34Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents [7.33319373357049]
This paper introduces SMARLA, a black-box safety monitoring approach specifically designed for Deep Reinforcement Learning (DRL) agents.
SMARLA utilizes machine learning to predict safety violations by observing the agent's behavior during execution.
Empirical results reveal that SMARLA is accurate at predicting safety violations, with a low false positive rate, and can predict violations at an early stage, approximately halfway through the execution of the agent, before violations occur.
arXiv Detail & Related papers (2023-08-03T21:08:51Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.