SureFED: Robust Federated Learning via Uncertainty-Aware Inward and
Outward Inspection
- URL: http://arxiv.org/abs/2308.02747v2
- Date: Fri, 1 Mar 2024 00:33:40 GMT
- Title: SureFED: Robust Federated Learning via Uncertainty-Aware Inward and
Outward Inspection
- Authors: Nasimeh Heydaribeni, Ruisi Zhang, Tara Javidi, Cristina Nita-Rotaru,
Farinaz Koushanfar
- Abstract summary: We introduce SureFED, a novel framework for robust federated learning.
SureFED establishes trust using the local information of benign clients.
We theoretically prove the robustness of our algorithm against data and model poisoning attacks.
- Score: 29.491675102478798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we introduce SureFED, a novel framework for byzantine robust
federated learning. Unlike many existing defense methods that rely on
statistically robust quantities, making them vulnerable to stealthy and
colluding attacks, SureFED establishes trust using the local information of
benign clients. SureFED utilizes an uncertainty aware model evaluation and
introspection to safeguard against poisoning attacks. In particular, each
client independently trains a clean local model exclusively using its local
dataset, acting as the reference point for evaluating model updates. SureFED
leverages Bayesian models that provide model uncertainties and play a crucial
role in the model evaluation process. Our framework exhibits robustness even
when the majority of clients are compromised, remains agnostic to the number of
malicious clients, and is well-suited for non-IID settings. We theoretically
prove the robustness of our algorithm against data and model poisoning attacks
in a decentralized linear regression setting. Proof-of Concept evaluations on
benchmark image classification data demonstrate the superiority of SureFED over
the state of the art defense methods under various colluding and non-colluding
data and model poisoning attacks.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning (FL) is a distributed machine learning diagram that enables multiple clients to collaboratively train a global model without sharing their private local data.
FL systems are vulnerable to attacks that are happening in malicious clients through data poisoning and model poisoning.
Existing defense methods typically focus on mitigating specific types of poisoning and are often ineffective against unseen types of attack.
arXiv Detail & Related papers (2024-08-05T20:27:45Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server.
This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Analysis)
Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not.
arXiv Detail & Related papers (2023-08-18T05:37:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
Federated Learning is designed to address privacy concerns in learning models.
New distributed paradigm safeguards data privacy but differentiates the attack surface due to the server's inaccessibility to local datasets.
arXiv Detail & Related papers (2022-12-05T01:52:32Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
We develop an open-source toolkit OpenBackdoor to foster the implementations and evaluations of textual backdoor learning.
We also propose CUBE, a simple yet strong clustering-based defense baseline.
arXiv Detail & Related papers (2022-06-17T02:29:23Z) - Byzantine-Robust Federated Learning via Credibility Assessment on
Non-IID Data [1.4146420810689422]
Federated learning is a novel framework that enables resource-constrained edge devices to jointly learn a model.
Standard federated learning is vulnerable to Byzantine attacks.
We propose a Byzantine-robust framework for federated learning via credibility assessment on non-iid data.
arXiv Detail & Related papers (2021-09-06T12:18:02Z) - A Comprehensive Evaluation Framework for Deep Model Robustness [44.20580847861682]
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications.
They are vulnerable to adversarial examples, which motivates the adversarial defense.
This paper presents a model evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics.
arXiv Detail & Related papers (2021-01-24T01:04:25Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.