論文の概要: Private Federated Learning with Dynamic Power Control via Non-Coherent
Over-the-Air Computation
- arxiv url: http://arxiv.org/abs/2308.02881v1
- Date: Sat, 5 Aug 2023 13:46:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 18:08:42.508638
- Title: Private Federated Learning with Dynamic Power Control via Non-Coherent
Over-the-Air Computation
- Title(参考訳): 非コヒーレントオーバーザエア計算による動的電力制御によるプライベートフェデレーション学習
- Authors: Anbang Zhang, Shuaishuai Guo, Shuai Liu
- Abstract要約: 動的電力制御に基づくスキームが提案されている。
提案手法は,時間同期誤差,チャネルのフェージング,ノイズの影響を緩和できることを示す。
- 参考スコア(独自算出の注目度): 12.56727008993937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To further preserve model weight privacy and improve model performance in
Federated Learning (FL), FL via Over-the-Air Computation (AirComp) scheme based
on dynamic power control is proposed. The edge devices (EDs) transmit the signs
of local stochastic gradients by activating two adjacent orthogonal frequency
division multi-plexing (OFDM) subcarriers, and majority votes (MVs) at the edge
server (ES) are obtained by exploiting the energy accumulation on the
subcarriers. Then, we propose a dynamic power control algorithm to further
offset the biased aggregation of the MV aggregation values. We show that the
whole scheme can mitigate the impact of the time synchronization error, channel
fading and noise. The theoretical convergence proof of the scheme is
re-derived.
- Abstract(参考訳): モデル重みのプライバシをさらに保ち、フェデレーション学習(fl)におけるモデル性能を向上させるため、動的電力制御に基づくaircomp(over-the-air computation)方式を提案する。
エッジ装置(ED)は、隣接する2つの直交周波数分割(OFDM)サブキャリアを活性化して局所確率勾配の兆候を送信し、エッジサーバ(ES)における多数票(MV)は、サブキャリアのエネルギー蓄積を利用して得られる。
そこで本稿では,MVアグリゲーション値のバイアスアグリゲーションをさらにオフセットする動的パワー制御アルゴリズムを提案する。
提案手法は,時間同期誤差,チャネルのフェージング,ノイズの影響を緩和できることを示す。
このスキームの理論的収束証明は再帰的である。
関連論文リスト
- Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - Generation of C-NOT, SWAP, and C-Z Gates for Two Qubits Using Coherent
and Incoherent Controls and Stochastic Optimization [56.47577824219207]
我々は、Gorini-Kossakowsky-Sudarchhan-Lindblad型マスター方程式によって決定される開量子系の力学の一般的な形式を考える。
我々は,2ビットのC-NOT,SWAP,C-Zゲートを生成する際の制御問題を,一括定数制御と最適化を用いて解析する。
論文 参考訳(メタデータ) (2023-12-09T17:55:47Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
本稿では,変圧器を用いたマルチエージェント・アクタ・クリティカル・フレームワーク(T-MAAC)を提案する。
さらに、電圧制御タスクに適した新しい補助タスクトレーニングプロセスを採用し、サンプル効率を向上する。
論文 参考訳(メタデータ) (2022-06-08T07:48:42Z) - Over-the-Air Federated Multi-Task Learning via Model Sparsification and
Turbo Compressed Sensing [48.19771515107681]
本稿では,エッジサーバの協調の下で,エッジデバイス上にデプロイされた複数の学習タスクを非直交型フェードチャネルで共有する,オーバー・ザ・エアのFMTLフレームワークを提案する。
OA-FMTLでは、エッジデバイスの局所的な更新はスパース化され、圧縮され、重ね合わせの方法でアップリンクチャネルに送信される。
提案するOA-FMTLフレームワークとM-Turbo-CSアルゴリズムの性能解析を行った。
論文 参考訳(メタデータ) (2022-05-08T08:03:52Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - End-to-End Learning of OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
送信機にニューラルネットワーク(NN)を用いて,PAPRと隣接チャネルリーク比(ACLR)を制御可能な高次元変調方式を学習することを提案する。
2つのNNはOFDM上で動作し、PAPRとACLRの制約を強制するトレーニングアルゴリズムを使用して、エンドツーエンドで共同最適化される。
論文 参考訳(メタデータ) (2021-06-30T13:09:30Z) - Turning Channel Noise into an Accelerator for Over-the-Air Principal
Component Analysis [65.31074639627226]
主成分分析(PCA)は、データセットの線形構造を抽出するための技術です。
勾配降下アルゴリズムに基づくマルチアクセスチャネル上にPCAを配置する手法を提案する。
オーバー・ザ・エア・アグリゲーションはマルチ・アクセスの遅延を減らすために採用され、オーバー・ザ・エア・PCAという名称を与える。
論文 参考訳(メタデータ) (2021-04-20T16:28:33Z) - Cluster-Based Cooperative Digital Over-the-Air Aggregation for Wireless
Federated Edge Learning [9.179817518536545]
空気上計算(AirComp)を用いた無線エッジにおける連合学習システムについて検討する。
このようなシステムでは、ユーザは、高速なモデルアグリゲーションを実現するために、マルチアクセスチャネル上でメッセージを同時に送信する。
本稿では,ユーザが位相補正を行い,全電力で送信する送信機の要求を緩和する改良されたディジタルAirComp方式を提案する。
論文 参考訳(メタデータ) (2020-08-03T16:29:52Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。