論文の概要: FireFly A Synthetic Dataset for Ember Detection in Wildfire
- arxiv url: http://arxiv.org/abs/2308.03164v1
- Date: Sun, 6 Aug 2023 17:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 16:23:15.352846
- Title: FireFly A Synthetic Dataset for Ember Detection in Wildfire
- Title(参考訳): FireFly - 森林火災におけるエンバー検出のための合成データセット
- Authors: Yue Hu, Xinan Ye, Yifei Liu, Souvik Kundu, Gourav Datta, Srikar
Mutnuri, Namo Asavisanu, Nora Ayanian, Konstantinos Psounis, Peter Beerel
- Abstract要約: ファイアフライ」は、Unreal Engine 4 (UE4) を用いたエンバー検出のための合成データセットである。
私たちは4つの人気オブジェクト検出モデルでFireFlyを評価するために使用した19,273フレームを作成しました。
現実世界の山火事では平均精度(mAP)が8.57%向上した。
- 参考スコア(独自算出の注目度): 16.46603047745511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents "FireFly", a synthetic dataset for ember detection
created using Unreal Engine 4 (UE4), designed to overcome the current lack of
ember-specific training resources. To create the dataset, we present a tool
that allows the automated generation of the synthetic labeled dataset with
adjustable parameters, enabling data diversity from various environmental
conditions, making the dataset both diverse and customizable based on user
requirements. We generated a total of 19,273 frames that have been used to
evaluate FireFly on four popular object detection models. Further to minimize
human intervention, we leveraged a trained model to create a semi-automatic
labeling process for real-life ember frames. Moreover, we demonstrated an up to
8.57% improvement in mean Average Precision (mAP) in real-world wildfire
scenarios compared to models trained exclusively on a small real dataset.
- Abstract(参考訳): 本稿では,Unreal Engine 4 (UE4) を用いたエンバー検出のための合成データセット "FireFly" について述べる。
データセットを作成するために,調整可能なパラメータを用いた合成ラベル付きデータセットの自動生成を可能にし,様々な環境条件からのデータ多様性を可能とし,ユーザの要求に応じてデータセットの多様性とカスタマイズを両立させるツールを提案する。
我々は4つの人気オブジェクト検出モデルでFireFlyを評価するために,合計19,273フレームを生成した。
さらに,人間の介入を最小限に抑えるために,実生活のemberフレームのためのセミオートマチックなラベリングプロセスを作成するために,訓練されたモデルを利用した。
さらに、実際の山火事のシナリオで平均平均精度(mAP)が8.57%向上することが実証された。
関連論文リスト
- Boundless: Generating Photorealistic Synthetic Data for Object Detection in Urban Streetscapes [7.948212109423146]
本研究では,高密度都市景観におけるオブジェクト検出のための写真リアルな合成データ生成システムであるBoundlessを紹介する。
Boundlessは、大規模な実世界のデータ収集と手動のグラウンドトルースオブジェクトアノテーション(ラベル付け)を置き換えることができる
本研究では、Boundlessが生成したデータセットに基づいて学習したオブジェクト検出モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-09-04T18:28:10Z) - Dataset Regeneration for Sequential Recommendation [69.93516846106701]
DR4SRと呼ばれるモデルに依存しないデータセット再生フレームワークを用いて、理想的なトレーニングデータセットを開発するためのデータ中心のパラダイムを提案する。
データ中心のパラダイムの有効性を示すために、我々はフレームワークを様々なモデル中心の手法と統合し、4つの広く採用されているデータセット間で大きなパフォーマンス改善を観察する。
論文 参考訳(メタデータ) (2024-05-28T03:45:34Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Identifying Light-curve Signals with a Deep Learning Based Object
Detection Algorithm. II. A General Light Curve Classification Framework [0.0]
弱教師付き物体検出モデルを用いて光曲線を分類するための新しいディープラーニングフレームワークを提案する。
本フレームワークは,光曲線とパワースペクトルの両方に最適なウィンドウを自動同定し,対応するデータにズームインする。
我々は、変動星と過渡星の宇宙と地上の両方のマルチバンド観測から得られたデータセットに基づいてモデルを訓練する。
論文 参考訳(メタデータ) (2023-11-14T11:08:34Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGENは、高品質な合成データセットを生成するための、多段階のプロンプト戦略である。
我々は,LLMが不正確なラベル付きインスタンスを修正できるようにする自己補正法により,TarGENを増強する。
合成データセットを元のデータセットと比較した包括的な分析により、データセットの複雑さと多様性の類似または高いレベルが明らかになる。
論文 参考訳(メタデータ) (2023-10-27T03:32:17Z) - VALERIE22 -- A photorealistic, richly metadata annotated dataset of
urban environments [5.439020425819001]
VALERIEツールパイプラインは、ドメイン固有の要素の理解に寄与するために開発された合成データジェネレータである。
VALERIE22データセットは、フォトリアリスティックセンサーシミュレーションを提供するVALERIEプロシージャツールパイプラインで生成された。
データセットは独自のリッチなメタデータセットを提供し、特定のシーンとセマンティックな特徴の抽出を可能にする。
論文 参考訳(メタデータ) (2023-08-18T15:44:45Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
本稿では,ニューラルレージアンスフィールド(NeRF)を対象アプリケーションの損失関数を持つ閉ループに使用した,最初の完全微分可能な合成データパイプラインを提案する。
提案手法は,人的負担を伴わないオンデマンドでデータを生成し,目標タスクの精度を最大化する。
論文 参考訳(メタデータ) (2022-07-22T22:48:33Z) - Reconstruction of Incomplete Wildfire Data using Deep Generative Models [0.0]
我々は、Missing Data Conditional-Weighted Autocoderen (CMIWAE)と呼ばれる強力な変分オートエンコーダモデルの変種を示す。
我々の深層変数生成モデルは機能エンジニアリングをほとんど必要とせず、必ずしもデータチャレンジのスコアの特異性に依存していません。
論文 参考訳(メタデータ) (2022-01-16T23:27:31Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
目的の新たな微分可能近似に基づく最適な合成データ生成法を提案する。
提案手法は,学習データ生成の高速化(最大50Times$)と,実世界のテストデータセットの精度向上(+8.7%$)を実現している。
論文 参考訳(メタデータ) (2020-08-16T11:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。