Detection of Anomalies in Multivariate Time Series Using Ensemble
Techniques
- URL: http://arxiv.org/abs/2308.03171v1
- Date: Sun, 6 Aug 2023 17:51:22 GMT
- Title: Detection of Anomalies in Multivariate Time Series Using Ensemble
Techniques
- Authors: Anastasios Iliopoulos, John Violos, Christos Diou and Iraklis Varlamis
- Abstract summary: We propose an ensemble technique that combines multiple base models toward the final decision.
A semi-supervised approach using a Logistic Regressor to combine the base models' outputs is also proposed.
The performance improvement in terms of anomaly detection accuracy reaches 2% for the unsupervised and at least 10% for the semi-supervised models.
- Score: 3.2422067155309806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly Detection in multivariate time series is a major problem in many
fields. Due to their nature, anomalies sparsely occur in real data, thus making
the task of anomaly detection a challenging problem for classification
algorithms to solve. Methods that are based on Deep Neural Networks such as
LSTM, Autoencoders, Convolutional Autoencoders etc., have shown positive
results in such imbalanced data. However, the major challenge that algorithms
face when applied to multivariate time series is that the anomaly can arise
from a small subset of the feature set. To boost the performance of these base
models, we propose a feature-bagging technique that considers only a subset of
features at a time, and we further apply a transformation that is based on
nested rotation computed from Principal Component Analysis (PCA) to improve the
effectiveness and generalization of the approach. To further enhance the
prediction performance, we propose an ensemble technique that combines multiple
base models toward the final decision. In addition, a semi-supervised approach
using a Logistic Regressor to combine the base models' outputs is proposed. The
proposed methodology is applied to the Skoltech Anomaly Benchmark (SKAB)
dataset, which contains time series data related to the flow of water in a
closed circuit, and the experimental results show that the proposed ensemble
technique outperforms the basic algorithms. More specifically, the performance
improvement in terms of anomaly detection accuracy reaches 2% for the
unsupervised and at least 10% for the semi-supervised models.
Related papers
- RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTS is designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets.
RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals.
Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive.
arXiv Detail & Related papers (2024-08-06T18:52:15Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - An Adaptive EM Accelerator for Unsupervised Learning of Gaussian Mixture
Models [0.7340845393655052]
We propose an Anderson Acceleration scheme for the adaptive Expectation-Maximization (EM) algorithm for unsupervised learning.
The proposed algorithm is able to determine the optimal number of mixture components autonomously, and converges to the optimal solution much faster than its non-accelerated version.
arXiv Detail & Related papers (2020-09-26T22:55:44Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Total Deep Variation: A Stable Regularizer for Inverse Problems [71.90933869570914]
We introduce the data-driven general-purpose total deep variation regularizer.
In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks.
We achieve state-of-the-art results for numerous imaging tasks.
arXiv Detail & Related papers (2020-06-15T21:54:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.